
THESIS

A COMPUTER SIMULATION STUDY
AND COMPONENT EVALUATION FOR A

QUATERNION FILTER FOR SOURCELESS TRACKING
OF HUMAN LIMB SEGMENT MOTION

by

German A. Henault

March 1997

 Thesis Co-Advisors: Robert B. McGhee
John S. Falby

Approved for public release; distribution is unlimited.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING/ MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

5. FUNDING NUMBERS

i

Henault, German A.

March 1997 Master’s Thesis

Unclassified Unclassified ULUnclassified

 107

A COMPUTER SIMULATION STUDY AND COMPONENT
EVALUATION FOR A QUATERNION FILTER FOR SOURCELESS
TRACKING OF HUMAN LIMB SEGMENT MOTION

Naval Postgraduate School
Monterey, CA 93943-5000

The views expressed in this thesis are those of the authors and do not reflect the official policy or position
of the Department of Defense or the United States Government.

Approved for public release; distribution is unlimited.

Current methods of tracking the human body within virtual environments (VE) are hampered by problems due
to interference which occurs from using artificially generated source signals. In recent years, the miniaturization of
self-contained inertial tracking systems has made them a viable alternative. They are impervious to external
interference but require filtering in order to give accurate orientation data. Filters for this purpose using Euler angles
are common, but are limited by their inability to track through the vertical axis. A filter based on quaternions would
not have this limitation.

This thesis presents an implementation of a quaternion filter in Lisp. The filter was tested with a computer
simulated inertial tracker. Also presented is a quantitative and qualitative assessment of an existing inertial tracker,
Angularis, which uses a filter based on Euler angles.

This effort resulted in an improved filter based on quaternions which allows objects to be tracked through the
vertical axis making it a more desirable option for body tracking applications. The evaluation of the Angularis
inertial tracker yielded generally good results when tested on a tilt-table at various rates of motion through 45
degrees of rotation. Specifically, orientation errors measured were typically less than one degree for smooth
motion. However, when moved rapidly through large orientation angles, it was found that the nonlinear
characteristic of the proprietary filter resulted in large steady state errors.

human interface, virtual environment, articulated humans, human modeling,
inertial sensors, quaternions, euler angles, Angularis, InterSense

ii

.

iii

Approved for public release; distribution is unlimited

A COMPUTER SIMULATION STUDY AND COMPONENT EVALUATION
FOR A QUATERNION FILTER FOR SOURCELESS TRACKING

OF HUMAN LIMB SEGMENT MOTION

German A. Henault
Lieutenant, United States Navy
B.A., Temple University, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 1997

Author:
 German A. Henault

Approved by:

Robert B. McGhee, Thesis Co-Advisor

John S. Falby, Thesis Co-Advisor

Ted Lewis, Chairman,
Department of Computer Science

iv

v

ABSTRACT

Current methods of tracking the human body within virtual environments (VE) are

hampered by problems due to interference which occurs from using artificially generated

source signals. In recent years, the miniaturization of self-contained inertial tracking

systems has made them a viable alternative. They are impervious to external interference

but require filtering in order to give accurate orientation data. Filters for this purpose using

Euler angles are common, but are limited by their inability to track through the vertical axis.

A filter based on quaternions would not have this limitation.

This thesis presents an implementation of a quaternion filter in Lisp. The filter was

tested with a computer simulated inertial tracker. Also presented is a quantitative and

qualitative assessment of an existing inertial tracker, Angularis, which uses a filter based

on Euler angles.

This effort resulted in an improved filter based on quaternions which allows objects

to be tracked through the vertical axis making it a more desirable option for body tracking

applications. The evaluation of the Angularis inertial tracker yielded generally good results

when tested on a tilt-table at various rates of motion through 45 degrees of rotation.

Specifically, orientation errors measured were typically less than one degree for smooth

motion. However, when moved rapidly through large orientation angles, it was found that

the nonlinear characteristic of the proprietary filter resulted in large steady state errors.

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION ..1

A. MOTIVATION... 1

B. GOALS ... 2

C. ORGANIZATION .. 3

II. BACKGROUND ..5

A. MEASURING MOTION TRACKER PERFORMANCE.......................... 5

B. TYPES OF MOTION TRACKERS ... 7

1. Mechanical...7

2. Electromagnetic ...10

3. Acoustic ...11

4. Inertial ..12

C. RELATED WORK ... 15

1. Responsive Workbench ™ ..15

2. Computer Graphics System with Force Feedback.............................17

3. RF/Inertial Head-Tracker...17

D. SUMMARY.. 18

III. A QUATERNION ATTITUDE FILTER ...19

A. QUATERNIONS VS. EULER ANGLES .. 20

1. Euler Angles...20

2. Quaternions..24

B. DERIVATION OF QUATERNION FILTER.. 25

C. SUMMARY.. 31

IV. QUATERNION FILTER IN LISP ...33

A. THE SIMULATION MODEL.. 35

B. SIMULATION RESULTS ... 38

C. SUMMARY.. 42

V. RESULTS ...45

viii

A. ANGULARIS INERTIAL TRACKING SYSTEM.................................. 45

B. QUATERNION FILTER.. 53

VI. SUMMARY AND CONCLUSIONS ...55

A. SUMMARY.. 55

B. CONCLUSIONS... 56

C. FUTURE WORK.. 57

APPENDIX A. DERIVATION OF X MATRIX ...59

APPENDIX B. DERIVATION OF GRADIENT ...63

APPENDIX C. SIMULATION MODEL CODE ...65

APPENDIX D. SIMULATION MODEL TEST RUNS USING GRADIENT DESCENT

METHOD ...83

LIST OF REFERENCES ..87

INITIAL DISTRIBUTION LIST ...91

ix

LIST OF FIGURES

Figure 1: IPORT Soldier Station [NRG97]. ... 8

Figure 2: Graphics Force Feedback System [HANC96]. ... 9

Figure 3: Virtual, Stereoscopic Displayed Skeleton [GMD97]. 16

Figure 4: Projector-Mirror System [GMD97]... 16

Figure 5: Coordinate Systems (Frames) [CRAI89]. ... 19

Figure 6: Azimuth, Elevation, and Roll Rotations.. 20

Figure 7: Euler Angle Estimation Portion of SANS Filter [MCGH95, BACH96A]........ 23

Figure 8: Quaternion Filter [BACH96B, MCGH96A]. .. 27

Figure 9: Measured Orientation Vector[BACH96B].. 28

Figure 10: Angular Rate Sensor Output [BACH96B]. ... 31

Figure 11: Code Fragment Showing Accelerometer Output Using Quaternions. 36

Figure 12: Deviation and Dip Angle Corrections for the Earth’s Local Magnetic Field
[FREY96B, MCGH96C]. ... 37

Figure 13: Gradient Convergence Method. .. 38

Figure 14: Posture Slot Default Value. ... 39

Figure 15: Gauss-Newton Equation.. 41

Figure 16: Gauss-Newton Iteration with 10-degrees Error... 42

Figure 17: Gauss-Newton Iteration with 20-degrees Error... 42

Figure 18: 45-Degree Roll at 10-Degrees/Second. ... 47

Figure 19: 45-Degree Roll at 45 Degrees/Second. ... 48

Figure 20: 45-Degree Roll at 90 Degrees/Second. ... 49

x

Figure 21: Roll Angle for Random Motions... 51

Figure 22: Pitch Angle for Random Motions. .. 52

xi

LIST OF TABLES

Table 1: Evaluation of Position-Tracking Technologies [MEYE92, SKOP96]. 13

xii

xiii

ACKNOWLEDGMENTS

I would like to express my sincerest thanks to all the people who have helped me along

the way in preparation of this thesis. It’s difficult to express, in such a limited number of

words, how much my thesis advisor, Dr. Robert McGhee, has changed the way I look at the

world around me and how I see myself. His passion for teaching, limitless patience, and

dedication to his students has had a profound impact on my life. I will always remember

the lessons he has taught me, not only in the classroom but also in life. I would also like to

thank my co-advisor, Mr. John Falby, the best C++ programmer I know, a great teacher,

and a good friend. His ability to keep us organized and focused when things got crazy was

nothing short of amazing. I could not have had two better advisors. Thanks to my fellow

classmates, for their friendship and support, from whom I have learned a great deal.

Finally, but most importantly, thank you to my wife Diana. Her amazing support through

all of my life’s endeavors has made it all possible. Thank you for loving me.

xiv

1

I. INTRODUCTION

A. MOTIVATION

Computer systems have experienced a dramatic increase in performance and power in

a relatively short period of time. This increased performance makes more realistic and

immersive computer simulations possible for research, training and entertainment

purposes. However, as rapidly as computer systems have increased in capability, one

specific area of computer simulations lags behind. Research into more realistic and natural

interactive input devices has come along very slowly and has not had the same success as

other aspects of computer hardware. The need for intuitive interaction in virtual

environments (VE) has driven the development of several different approaches to

accomplishing total immersion into synthetic worlds. The main thrust of research in this

realm has been in the area of producing new and improved sensors for tracking the human

form and other objects effectively and efficiently and with as little hindrance to the user as

possible.

In recent years, inertial sensing technology has become a viable alternative to systems

based upon mechanical, electromagnetic, acoustic, and optical tracking sensors. Inertial

trackers solve the problems encountered when using these systems, namely, shadowing,

metallic, electronic and acoustic interference as well as limitations in range. The self-

contained inertial sensors are impervious to any outside interference and function solely by

sensing the earth’s magnetic and gravitational fields. A combination of accelerometers,

angular rate sensors, and magnetometers provide the system with the data required to

accurately specify spatial orientations. However, inherent limitations and errors associated

2

with accelerometers and angular rate sensors necessitates proper filtering be applied in

order to extract reliable orientation information.

B. GOALS

A quaternion attitude filter has been proposed which overcomes the singularities

encountered when using Euler angles to represent object orientations [MCGH96A]. The

goal of this thesis is to implement a simulation of an inertial system that will provide a

useful and decisive demonstration of the filter’s applicability to body tracking applications.

Allegro Common Lisp, ver. 3.0.1 for Windows was chosen as the programming language

with which to implement the simulation.

This thesis also takes an existing inertial sensor, the Angularis system, built by

InterSense, Inc., [INTE97], and presents a quantitative and qualitative analysis of its

performance. Even though this particular sensor was built specifically for the tracking of

the human head using a head mounted display (HMD), it is the goal of this study to test the

applicability of this particular sensor to other types of tracking. Specifically, to determine

the viability of using such a sensor in human limb segment tracking applications. The

sensor is evaluated against a system that is very well known and understood by researchers

at the Naval Postgraduate School (NPS), the Shallow-Water AUV Navigation System

(SANS) which is currently being used in the ongoing Autonomous Underwater Vehicle

(AUV) research [BACH96A, MCGH95, MCGH96B]. It is hoped that the Angularis

system can perform as well as or better than the much larger SANS system. This advanced,

miniaturized inertial sensing technology, used in conjunction with the quaternion filter

presented in this thesis, may allow for the creation of a full body suit which would be

3

capable of tracking an entire human body within VE applications much more reliably and

accurately than current systems.

C. ORGANIZATION

Chapter II of this thesis surveys existing sensor technology and presents current work

in the area of human body tracking. Chapter III presents a detailed mathematical

formulation of a quaternion filter. The quaternion filter is presented as an alternative to the

use of Euler angles in representing object orientations. The quaternion representation

avoids singularities experienced when tracking objects through the vertical axis as happens

when using the more familiar Euler angles. Chapter IV elaborates on the use of the

quaternion filter by presenting a simulation model, created as part of this research, to show

the viability of using such a filter in conjunction with inertial sensors for object tracking in

VE’s. Chapter V presents the results of quantitative and qualitative evaluations of the

Angularis inertial tracker. Comparisons are made between the Angularis tracker and the

SANS system, currently being researched in the NPS AUV project. Chapter VI, the last

chapter, presents conclusions about the results of this research and some recommendations

for possible future work with quaternion filters and inertial trackers.

4

5

II. BACKGROUND

High-performance computer graphics are being applied to an expanding range of

domains [BADL93]. One of the most dramatic and exciting areas is the real-time,

interactive representation of the human form in training, research and entertainment

applications. Several requirements must be met in order to effectively create a realistic

representation, namely: 1) create a human model with the desired level of detail, 2) define

the level of control and user inputs for manipulating the model, and 3) provide inputs to the

model in a timely fashion in order to achieve real-time performance [SKOP96]. Task

number two, user input methods, is the focus of this thesis.

The primary purpose of any tracking device is to provide an intuitive interface between

human and machine in order to achieve the desired illusion of total immersion. The user

must be allowed to interact with the VE in a familiar and natural way. Therefore, the use

of standard 2D pointing devices is unacceptable if the goal is to achieve realistic

interaction. To that end, a few different types of trackers have been introduced which

employ varying methods to capture the position and orientation data of a tracked object

[FREY96A]. The remainder of this chapter presents four specific types of trackers as well

as quantitative measures by which they can be compared and evaluated.

A. MEASURING MOTION TRACKER PERFORMANCE

Although several different sensor tracking technologies have been developed and

applied to VE applications, there exists no standard evaluation method by which to obtain

quantifiable comparisons between different types of trackers [SKOP96]. Typically,

6

financial constraints and the intended application will dictate which tracker is most

appropriate for a given project. [MEYE92] suggests some key measures by which tracking

systems may be evaluated, namely, (1)resolution andaccuracy, (2) responsiveness, (3)

robustness, (4) registration, and (5)sociability. Resolution can be defined as the smallest

change which can be detected by a given tracking system. The level of detail required by

the application will define the resolution required. Higher resolutions are necessary for

applications which necessitate the tracking of small, precise movements. Accuracy is the

sensor’s error range. Given some orientation or position information, the accuracy will

determine the range for which the raw data is correct. For example, inertial systems use

angular rate sensors which tend to drift over time due to inherent bias errors. The bias

determines the accuracy of the sensor and must be accounted for by filtering techniques. A

system’ssampling rate, data rate, update rate, andlag (or latency) all combine to describe

the overall responsiveness. Sampling rate is simply how often the sensor is checked for

new data. The rate at which new data becomes available is the system’s data rate. Data

rate is defined as the number of computed data points per second that the system can

provide. Most systems will implement a much higher sampling rate than data rate in order

to assure that new data is not missed. The rate at which the system can provide updated

position and orientation data to the host computer is the update rate. This data is raw data

and contains errors. Thus, the information must be filtered before it can be used with any

degree of reliability. Even then, the accuracy of the position and orientation updates is only

as good as the filter. Filtering the sensor data also takes time and will hinder real time

updates. A system’s lag is sometimes referred to as its latency and is perhaps one of the

7

most important specifications of a tracking system. Latency is the measure of the delay

between the movement of a tracked object and the corresponding movement of the

computer representation of that object in the VE. High latency in a tracking system is

undesirable. When sufficiently large, it produces visually disturbing anomalies in the

computer simulation. These anomalies tend to disorient and confuse participants, possibly

even inducing nausea and vomiting [FOXL94]. Robustness is the measure of a system’s

susceptibility to noise and other interference from outside sources. Types of interference

include shadowing, metallic, electronic and acoustic. Registration is defined as the

coherence between the sensor’s actual position and orientation and reported position and

orientation. Finally, sociability describes a system’s maximumrange of operation, its

working volume, and the ability to track multiple targets within that operating range.

Working volume is that volume in which the tracker can accurately report position and/or

orientation information. [MEYE92]

These measures provide a means by which researchers and developers can

quantitatively determine the best technological alternative for a given application.

However, factors such as availability, cost, and ease of use must also be taken into

consideration before making a final decision [SKOP96].

B. TYPES OF MOTION TRACKERS

1. Mechanical

There are generally two different types of mechanical trackers, body-based and

ground-based [FREY96B]. Body-based (exo-skeletal) systems are characterized by

8

interconnected mechanical linkages mounted on the user’s body which measure joint

angles directly. An example is shown in Figure 1. Since no external source is required,

these sensors are not susceptible to external interference and are very accurate. The

physical linkages are well suited for providinghaptic responses. Haptic responses are

force feedback cues that enable the user to experience simulated exertion forces during a

VE simulation, further enhancing the realism of the environment and immersion of the

user.

Figure 1: IPORT Soldier Station [NRG97].

The same characteristics, however, that make mechanical tracking devices good for

haptic feedback also make such systems cumbersome, heavy, and not very comfortable to

use for extended periods of time [FREY96A]. Also, the manner in which the harness is

attached to the body must be considered carefully. In order to obtain reliable joint angle

data, relative motion between the physical linkages and the human body must be

9

eliminated. The joints of the device have to remain aligned with the joints of the human

user in order to ensure the co-location of their respective centers of rotation [FREY96B].

Ground-based systems are normally not attached to the user. Rather, they track the

position and orientation of a separate implement which is manipulated by the user

[FREY96B]. These systems, like their body-based counterparts, are very accurate and do

not suffer from external interference. However, their applicability is limited by their

restrictive working volume. These devices are usually not portable and require a

designated area for their use (Figure 2).

Figure 2: Graphics Force Feedback System [HANC96].

In general, mechanical trackers are very precise and responsive to user inputs and are

not hindered by external interference. Applications requiring a limited range of motion and

where user immobility is not a problem are best suited for this type of sensor. [MEYE92]

10

2. Electromagnetic

Electromagnetic trackers utilize artificially-generated electromagnetic fields to track

position and orientation. A fixed transmitter generates three orthogonal electromagnetic

fields which induce voltages in three orthogonal coils located in each detector attached to

the tracked object [FREY96B]. These induced voltages are related to the spatial orientation

of the detector relative to the transmitter [FREY96B]. This type of system is typically

referred to as asourced system with the source being the transmitter which generates the

reference electromagnetic fields. Currently, there are two implementations of

electromagnetic trackers available, alternating current (ac) and direct current (dc)

[MEYE92].

The two implementations work in the same manner except for the way that the

reference magnetic field is emitted. The source in an ac system emits continuously

changing magnetic fields producing circulating (eddy) currents which in turn produce

secondary ac magnetic fields that distort the emitter field pattern [MEYE92]. The dc

implementation, on the other hand, emits a sequence of pulses which reduce the effect of

distorting currents [MEYE92]. Since eddy currents are created only when the magnetic

field is changing, dc systems only generate distortions at the beginning of a measurement

cycle [MEYE92]. When the field reaches its steady state, no eddy currents are created,

reducing overall system distortion [MEYE92].

Electromagnetic tracking devices are relatively inexpensive and can be used to track

numerous objects position and orientation with accuracies adequate for some applications

[FREY96B, SKOP96]. The disadvantage, however, is that they have a limited working

11

volume due to the fact that they are sourced and the magnetic field strength diminishes with

distance [MEYE92, SKOP96, POLH93].

3. Acoustic

High frequency ultrasonic sound waves are used to track objects by either the

triangulation of several receivers (time-of-flight method, TOF) or by measuring a signal’s

phase difference between transmitter and receiver (phase-coherence method, PC)

[FREY96B, LIPM90]. The TOF method uses the calculated speed of sound through the air

to determine the distance between several transmitters and one receiver or vice-versa

[SKOP96]. Triangulation formulae are then used, with the calculated distances, to

determine object position [LIPM90]. Tracking can be extended to 6-DOF by placing

sensors at three separate locations on the same object. Systems utilizing the PC method

measure the phase difference between transmitted and received signals and determine the

corresponding change in position. However, when an object moves farther than one-half

wavelength in a single update period, tracking errors will occur in the position calculation

[SKOP96]. Consequently, over time, small errors in position determination will result in

large errors overall [FREY96B].

Acoustic systems based on TOF are susceptible to ranging errors due to reduced data

rates at greater operating distances. TOF systems are also more vulnerable to spurious

noise sources at any range. PC systems are less vulnerable to noise and in general

experience improved accuracy, responsiveness, range, and robustness because of their

higher data rates, but PC systems are prone to cumulative errors over time. Both systems

12

must maintain line-of-sight between transmitters and receivers in order to avoid position

data errors which result from sensor occlusion (shadowing). [MEYE92]

4. Inertial

Inertial tracking systems use a combination of linear acceleration, angular rate and

magnetometer sensors to determine rigid body orientation. Typically, angular orientation

is determined by integrating the output from the angular rate sensors [FREY96A]. This is

analogous to integrating linear velocity to find position. However, angular rate sensor

output is degenerated by an error calleddrift. Drift is defined as the tendency of bias errors,

inherent to the sensor, to cause increasing orientation measurement errors over time

[FREY96B]. The amount of drift error present in an angular rate sensors output is

dependent upon the quality of the sensor, with higher quality sensors having lower bias

errors [FREY96B]. This fundamental limitation makes angular rate sensors a short term

solution to determining a rigid body’s spatial orientation.

In order to compensate for the long term errors introduced by the use of angular rate

sensors, inertial systems utilize linear acceleration sensors called accelerometers.

Accelerometers measure the gravity vector, in reference to the local coordinate system, as

well as forced linear accelerations of the attached rigid body. This confounding of gravity

measurement is sometimes referred to asslosh [FOXL94]. Therefore, if the forced

acceleration is , and the acceleration due to gravity is , then the acceleration measured

by the accelerometer is [FOXL94]. Since most real objects do not

continuously accelerate, the average of the forced linear acceleration vector will eventually

a g

ameasured a g–=

13

become zero [FREY96B]. As the average of the forced acceleration vector approaches

zero, the averaged accelerometer output will therefore approach .

When averaged over the long term, the accelerometer will produce the gravity vector,

expressed in body coordinates, which in turn can be used to calculate the rigid body’s pitch

and roll angles relative to earth-coordinates [FREY96B]. This observation justifies the use

of a complementary filter [BROW92] which incorporates the short term accuracy of the

angular rate sensors with the long term stability of the accelerometers to provide accurate

orientation information for a tracked object.

The third component of inertial systems is the magnetometer. The magnetometer is

sensitive to the earth’s magnetic field and can sense rotations about the local vertical axis

[FREY96B]. Since accelerometers cannot detect rotations about the local vertical,

magnetometers must be used to correct drift errors in the azimuth calculations made from

angular rate sensor data. Thus, a careful combination of the data from all three sensors can

provide a good representation of spatial orientation. A summary of all the sensors

presented is given in Table 1.

Mechanical Magnetic Acoustic Inertial

Accuracy
and
Resolution

Good. Good in small work-
ing volumes. Accu-
racy tends to diminish
as emitter-sensor dis-
tance increases. Accu-
racy adversely
affected by ferromag-
netic objects in work-
ing volume.

Good. Good.

Table 1: Evaluation of Position-Tracking Technologies [MEYE92, SKOP96].

ameasured g–=

14

Responsive-
ness

Good. Relatively low data
rates. Filtering required
for distortions in emit-
ted field can introduce
lag.

TOF: Good at close
range. Data rates
diminish as range
increases.
PC: Unaffected by
range.

Good.

Robustness Good. Not
sensitive to
errors intro-
duced from
the environ-
ment.

Ferromagnetic objects
create eddy currents
that distort the emitted
field causing ranging
errors.

TOF: Low data rates
cause vulnerability to
ranging errors.
Robustness dimin-
ishes as range
increases and data
rates drop.
PC: High data rates
unaffected by range.
Excellent robustness.

Excellent.

Registration No reports. No reports. No reports. Good.

Sociability Limited
range. Two
systems can-
not effectively
occupy the
same working
volume.

Most effective for
small working vol-
umes. Distortions
from induced eddy cur-
rents increase with
field strength.
Configurations avail-
able for allowing sen-
sors to share emitters
or for multiple emitters
in same work space.

TOF: Accuracy and
responsiveness dimin-
ish as range
increases. Small effec-
tive working volume
can limit sociability.
PC: Large working
volume offers good
sociability. Increased
range does not affect
responsiveness.
Acoustic systems are
vulnerable to occlu-
sion.

Excellent.

Comments Cumbersome.
Well suited to
force feed-
back.

Available off-the-
shelf. Relatively inex-
pensive. Most com-
monly used in current
VR research.

Acoustic systems are
starting to appear in
marketplace and are
relatively inexpensive.

Expensive and not
widely available.

Mechanical Magnetic Acoustic Inertial

Table 1: Evaluation of Position-Tracking Technologies [MEYE92, SKOP96].

15

C. RELATED WORK

1. Responsive Workbench ™

The Responsive Workbench™ goal is to seamlessly integrate the computer into the

user’s world [GMD97]. This approach is contrary to the typical VE where the goal is to

immerse the user into the computer’s world and provide him/her with a virtual presence in

that world. With the approach taken by the creators of this system, it is possible for

everyday objects and activities to become inputs and outputs to the environment [GMD97].

The display, for instance, is not presented on a traditional computer monitor or television

screen but on a real 3D workbench (Figure 3). By doing this, the display becomes part of

the human’s working environment [GMD97]. Computer-generated stereoscopic images

are projected onto a tabletop via a projector-and-mirrors system as illustrated in Figure 4.

The 3D effect is observed by wearing shutter glasses. Although currently only one user is

tracked, the system allows other participants to observe the 3D interaction with their own

shutter glasses. The system also uses a 6-DOF tracking system to track the user's head as

well as tracking the user’s hands and an input stylus for environment interaction [GMD97].

The creators of the Responsive Workbench™ refer to their system as a "Responsive

Environment", which integrates tracking systems, cameras, projectors and microphones,

creating a more realistic training and learning environment and challenging traditional

expectations of what a computer workstation should be [GMD97]. Current applications of

this technology include: medical training, surgical planning, fluid dynamics visualization

in a virtual windtunnel, 3D architectural designs, molecular modeling and 3D

manipulations of molecular models [GMD97].

16

Figure 3: Virtual, Stereoscopic Displayed Skeleton [GMD97].

Figure 4: Projector-Mirror System [GMD97].

17

2. Computer Graphics System with Force Feedback

A more traditional effort, using mechanical sensors, is shown in Figure 2 [HANC96].

This system incorporates both stereoscopic viewing and direct object interaction with a

force feedback I/O handheld device [HANC96]. The system allows the user to not only

interact with virtual objects within the VE, but to also “feel” them. [HANC96] does not

refer to his system as “Virtual Reality” but instead as “Interactive Graphics”. He believes

that bimodal displays are the next step in computer graphics and that these systems are not

just for virtual reality games, but a serious tool that developers and researchers can utilize

in their work.

This system was implemented using two HP 735 UNIX workstations, a Phantom force

feedback device, and Crystal Eyes for stereoscopic viewing of the computer monitor

[HANC96]. The research focused primarily on the development and implementation of

real-time collision detection algorithms which could provide satisfactory user response.

The result was a system which could generate stereoscopic rendering rates of 20 Hz, force

update rates of over 1000 Hz with an overall system latency of 50 milliseconds [HANC96].

3. RF/Inertial Head-Tracker

A new 3D RF positioning system has been developed at Advanced Position Systems,

Inc. (ASPI Technology). Through the use of a new and innovative “dynamic calibration

method” developed by Dr. Jun Feng, the 3D RF positioning system improves the

positioning accuracy down to the millimeter scale [FENG97]. The success of the initial

positioning system prototype has prompted a proposal for a new 6-DOF RF/Inertial

tracking system. By incorporating the InterSense 3-DOF inertial tracker [INTE97] for

18

orientation information, it is proposed that a long range, lightweight 6-DOF cordless head-

tracker utilizing RF technology for position information can be developed [FENG97].

D. SUMMARY

This chapter presents a brief overview of available body tracking technology. Table 1

gives a consolidated evaluation summary of the sensors presented with respect to five

performance measures. This chapter does not provide a complete review of all available

tracking technologies, but rather attempts to present a general overview of this field of

technology. Interested readers are directed to [FREY96A, FREY96B, INTE97, MEYE92,

POLH93] for further discussion on these and various other systems which are currently

available and were not presented here. The next chapter introduces the quaternion filter

proposed by [MCGH96A] and presents the complete mathematical formulation of this

approach.

19

III. A QUATERNION ATTITUDE FILTER

In order to completely describe the state of a tracked object, both position and spatial

orientation information must be obtained. In robotics, acoordinate frame is used to

describe the position and orientation of objects with respect to some universal (earth-based)

coordinate system, Figure 5 provides an illustration of this idea. The coordinate frame is a

local (body) coordinate system which is rigidly attached to an object in a known way

[CRAI89]. Calculating the position and orientation of the frame determines the

“kinematic” state of the object. Various methods exist for representing the rotations

required to bring coordinate systems into alignment. This chapter presents a comparison

between the familiar and widely used Euler angle representation for rotations, and the less

common quaternion method. Also presented is a mathematical derivation of a quaternion

filter, proposed by [MCGH96A] as an alternative to filters based on Euler angles which

experience singularities at certain orientations.

Figure 5: Coordinate Systems (Frames) [CRAI89].

20

A. QUATERNIONS VS. EULER ANGLES

1. Euler Angles

Orientation information, obtained from the types of motion trackers presented in the

previous chapter, is given in local frame coordinates and must be translated into universal

coordinates before the object can be graphically represented within a VE. Translating from

one coordinate system into another requires the calculation of the rotation(s) and

translation(s) which bring both systems into alignment. One of the most popular and

intuitive methods of representing the rotation part of such transformations is by the use of

Euler angles. The Euler angle method represents the orientation of an object, with respect

to a known earth coordinate system, by applying three successive rotations, shown in

Figure 6.

Figure 6: Azimuth, Elevation, and Roll Rotations.

These rotations about the x, y, and z axes are represented by the “elementary” rotation

matrices for roll, elevation, and azimuth, respectively, given by [CRAI89]:

21

(eq. 3.1)

(eq. 3.2)

(eq. 3.3)

A significant disadvantage of Euler angles occurs when they are used to estimate and

calculate orientation angles for tracked objects. A specific example is the navigation filter

used in the NPS AUV project [MCGH95, BACH96A]. The filter incorporates inputs from

an onboard Inertial Measuring Unit (IMU), heading, and water-speed sensors with

intermittent GPS fixes to accurately provide continuous real-time navigational data

[BACH96A]. The problem occurs when elevation angles of are encountered. Given

the fact that submarines can go vertical only once, this singularity is not important in such

navigation problems. However, when applied to human body tracking, singularities can

occur because there is nothing to prevent many body segments from passing through a

vertical orientation. In a recent research effort, Euler angles were used by [SKOP96] to

represent orientations in an implementation of a human body tracking system, using

Polhemus™ 3-Space® electro-magnetic tracking sensors [POLH93]. The simulation

clearly demonstrated the effects of these singularities when limbs moved through the

Rx φ()
1 0 0

0 φcos φsin–

0 φsin φcos

=

Ry θ()
θcos 0 θsin

0 1 0

θsin– 0 θcos

=

Rz ψ()
ψcos ψsin– 0

ψsin ψcos 0

0 0 1

=

90°±

22

vertical axis. [SKOP96] was forced to employ error-checking programming techniques in

the software to avoid the problematic orientations and the system crashes that they would

have caused when encountering angle singularities.

The reason why elevation angles of are so critical is because Euler angle

orientation estimations result in divide-by-zero errors at these angles. A schematic

representation of the attitude estimation part of the navigation filter, developed for the NPS

AUV project, shown in Figure 7, illustrates this limitation [MCGH95, BACH96A]. As can

be seen, the accelerometer estimate of the roll angle, , is determined by using the

corresponding value for the elevation angle, , in the following equations

(eq. 3.4)

(eq. 3.5)

Clearly, when becomes , (eq. 3.5) will be undefined due to a divide-by-zero error

caused by the fact that .

 In the same portion of the filter, Euler rates are calculated from body rates using inputs

from the angular rate sensors. The angular rates, in body coordinates, are given by the

angular rate sensor inputs, , which are multiplied by the transformation T-matrix

and converted into Euler rates as defined below

90°±

φa

θa

θa

ẋ̇a
g
------asin=

φa

ẏ̇a
g θacos⋅
----------------------asin–=

θa 90°±

90°cos 0=

p q r, ,()

23

(eq. 3.6)

Multiplying out (eq. 3.6) yields:

(eq. 3.7)

(eq. 3.8)

(eq. 3.9)

Again, elevation angles of create divide-by-zero errors in (eq. 3.7) and (eq. 3.9). In

order to avoid such singularities, an alternative representation is needed.

Figure 7: Euler Angle Estimation Portion of SANS Filter
[MCGH95, BACH96A].

φ̇

θ̇
ψ̇

1 φ θtansin φ θtancos

0 φcos φsin–

0 φ θsecsin φ θseccos

p

q

r

=

φ̇ p q φ θ r φ θtancos+tansin+=

θ̇ q φ r φsin–cos=

ψ̇ q φ θ r φ θseccos+secsin=

90°±

θa
xa
˙̇

g
-----asin=

φa
ya
˙̇

g θcos⋅
-------------------asin–=

T φ θ ψ, ,()

K1

∫

φ θ ψ, ,()

K2

Magnetic Compass
ψc()

θaφa + -

φ̇s θ̇s

+

+

ψ̇s +

+

+ -

ψ

φ θ

Angular-rate
Sensors
(p, q, r)

,

Accelerometers

Euler Angles

ẋ̇a ẏ̇a ż̇a, ,()

Estimated Bias

-

+

pb qb rb, ,()

24

2. Quaternions

Quaternions are an extension of the familiar complex numbers. Instead of just having

one imaginary part, represented byi, quaternions have three “imaginary” parts, represented

by i, j , andk, all having the same value, . Thus,

i * i = i2 = -1 (eq. 3.10)

j * j = j2 = -1 (eq. 3.11)

k * k = k2 = -1 (eq. 3.12)

Quaternions can also be represented in three different notations. Depending upon the

particular application, it may be convenient to represent quaternions as either a linear

combination of four components, a four dimensional vector represented by the coefficients

of the linear combination, or as a scalar and a vector. That is, the following three notations

are equivalent:

(eq. 3.13)

(eq. 3.14)

(eq. 3.15)

When rotating vectors with quaternions, it will generally be required that unit quaternions

be used [COOK92]. This is done because of the convenient way in which the inverse of a

unit quaternion can be calculated. Specifically, the inverse of a unit quaternion is defined

as the conjugate of the quaternion; that is

q-1 = q* = (w, -v) (eq. 3.16)

where q-1 is the inverse of a unit quaternion and q* is the conjugate of quaternion q.

1–

q w xi yj zk+ + +=

q w x y z()=

q w v,()=

25

Any scalar or three dimensional vector can be represented as a quaternion. For scalars,

the vector (0 0 0) is appended to the scalar w to obtain

(eq. 3.17)

In the case of a three dimensional vector, the scalar 0 is appended to the front of the vector

to get the equivalent quaternion.

(eq. 3.18)

Once scalars and vectors have been properly converted to quaternions, quaternion algebra

can be applied to rotate vectors, multiply scalars, etc. Specifically, rotation of a vector, p,

by a quaternion, q, is defined as [PAUL90]

(eq. 3.19)

where q is a unit quaternion given by

(eq. 3.20)

The symbol u in (eq. 3.20) represents the unit vector about which the vector p is to be

rotated through an angle . It should be noted, unlike Euler angles, quaternion rotations

require only two trigonometric functions to rotate a vector and experience no singularities

at any angle of rotation.

B. DERIVATION OF QUATERNION FILTER

Filters are used to minimize errors and return accurate results in an environment where

noise corrupts the measurement of the desired data. In the case under consideration, the

data is the orientation measurements made by inertial sensors used to track human motion

q w0 0 0()=

q 0 x y z()=

protated qpq
1–

=

q
θ
2
--- u

θ
2
---sin,cos 

 =

θ

26

within a VE. Inertial sensors are inherently noisy and experience measurement errors due

to drift, slosh, and various manufacturing imperfections [FOXL94, FREY96A]. This

section presents a mathematical derivation of the quaternion filter proposed by

[MCGH96A] and depicted in Figure 8. This filter was developed as an alternative and

improvement to the Euler angle based filter that was designed for the AUV project at NPS

[MCGH95, BACH96A].

The quaternion attitude filter takes inputs from three separate sensors which, together,

make up the inertial tracking system. The system consists of accelerometers, angular rate

sensors, and a 3-axis magnetometer. Accelerometers measure the combination of forced

linear accelerations and the reaction force due to gravity, . Since

most real-life objects do not experience constant linear accelerations (i.e.), when

averaged over time, accelerometers on the average return the gravity vector or local

vertical, [FOXL94, FREY96B]. Angular rate sensors measure the

angular velocity in three axes. Output from the angular rate sensors can be integrated to

determine position, but because they experience drift errors over time, a combination of

accelerometers and magnetometers are required to correct the measured data.

Magnetometers measure the earth’s magnetic field in body coordinates. The main purpose

of the magnetometer triad is to sense the drift error of the angular rate sensors about the

vertical axis which can not be sensed by the accelerometers. Together, the three sensor

types provide an accurate means of calculating orientation measurements for any object.

ameasured a g–=

a 0→

ameasured g–=

27

Figure 8: Quaternion Filter [BACH96B, MCGH96A].

28

The quaternion filter computation begins with the normalized input measurements

from the accelerometers and magnetometer, as shown in Figure 9.

Figure 9: Measured Orientation Vector[BACH96B].

The measurement of the local vertical and the earth’s local magnetic field are represented

as the 3-dimensional unit vectors given in (eq. 3.21) and (eq. 3.22), respectively.

(eq. 3.21)

(eq. 3.22)

These vectors are then combined to form the complete measured orientation vector given

by

(eq. 3.23)

The filter uses the unit orientation quaternion, , which is set when the system is

initialized, to calculate the computed measurement vector, . The computed

measurement vector is given by

h h1h2h3()=

b b1b2b3()=

y0 h1h2h3b1b2b3()=

q̂

y q̂()

29

(eq. 3.24)

wherem is the earth’s unit gravity vector in earth coordinates andn is the earth’s unit

magnetic field vector in earth coordinates. Both the m and n vectors are rotated into body

coordinates in order to permit comparison with the measured orientation vector given by

(eq. 3.23). The error is then computed by taking the difference between the measured

vector in (eq. 3.23) and the computed vector in (eq. 3.24), and is given by the expression

(eq. 3.25)

One version of the quaternion filter uses an approach known as the “method of steepest

descent” to minimize the error in the computed orientation quaternion. The notion of a

mathematical gradient is required to implement the method. The gradient is defined as the

vector partial derivative of the squared error criterion function which is defined as the

square of (eq. 3.25) and is given by

(eq. 3.26)

The next step of the filter multiplies (eq. 3.25) by the feedback gain matrix K1, which,

for this implementation, is defined as

(eq. 3.27)

where, for the steepest descent

(eq. 3.28)

and [MCGH67]

y q̂() q̂
1–

mq̂ q̂
1–

nq̂,()=

ε q̂()6x1 y q̂()6x1 y06x1
–=

φ q̂()1x1 εT
q̂()1x6ε q̂()6x1=

K14x6
K4x4 2X4x6

T⋅=

K4x4 kI4x4–=

30

(eq. 3.29)

Appendix A presents the derivation of the X matrix given in (eq. 3.29). The result of the

top-half of the filter can then be given by

(eq. 3.30)

Substituting (eq. 3.27) into (eq. 3.30), gives

(eq. 3.31)

The gradient of the error criterion function given in (eq. 3.26) is defined as

(eq. 3.32)

Appendix B presents the derivation of the gradient given in (eq. 3.32). Now, substituting

(eq. 3.32) into (eq. 3.31), yields

(eq. 3.33)

Thus, this new expression gives the output from the top-half of the filter.

The vector given by (eq. 3.33) will be used to correct the computed value for which

is calculated using the bias-corrected output of the angular rate sensors in the lower left-

hand portion of the filter, Figure 10. The expression for is given by [COOK92]

(eq. 3.34)

where is the orientation quaternion computed on the previous cycle of the filter and

is the body coordinate angular rate sensor output, , corrected for the estimated

Xij
T ∂yi

∂q̂ j

4x6

=

q̇ε K14x6
ε q̂()6x1=

q̇ε K4x4 2X4x6
T ε q̂()6x1⋅=

∇φ q̂() ∂φ
∂q̂0
--------- ∂φ

∂q1
--------- ∂φ

∂q2
--------- ∂φ

∂q3
---------, , , 

 T
2X4x6

T ε q̂()6x1= =

q̇ε K4x4∇φ q̂()4x1=

q̇

q̇

q̇
1
2
---q̂ ωB

=

q̂ ωB

p q r()

31

bias, . Using (eq. 3.33), the output of the top-half of the filter, to correct (eq.

3.34), gives

(eq. 3.35)

The resulting vector from (eq. 3.35) is then numerically integrated and normalized, yielding

the next approximation for the orientation quaternion, . The approximation, , can then

be used to correct the graphical representation of a tracked object within a VE simulation.

Figure 10: Angular Rate Sensor Output [BACH96B].

C. SUMMARY

The filter presented above offers significant improvements over filters using Euler

angles. No singularities exist for any orientations, no trigonometric functions are required,

and unit quaternions make calculating inverses a simple matter. This type of filter would

be most desirable for applications which track human limb segments, eliminating the

pb qb rb()

q̇̂ q̇ K4x4∇φ q̂()4x1–=

q̂ q̂

32

vertical axis singularities which are encountered frequently when Euler angles are used in

human motion simulations.

The next chapter presents a Lisp implementation of the quaternion filter. An inertial

system, consisting of accelerometers, angular rate sensors, and a 3-axis magnetometer, is

simulated to test the convergence and stability of the filter.

33

IV. QUATERNION FILTER IN LISP

In order to validate the theory presented in the previous chapter, a simulation model was

implemented in Lisp. The model simulates output from a static inertial sensor and uses the

quaternion filter to correct the resulting orientation quaternion. To simulate error, the filter

is initialized to an estimated orientation quaternion which can be offset from the sensor’s

orientation by as much as . This, of course, is a simulation to evaluate the theory and

performance of the filter. One would never expect to see deviations as high as in actual

implementations. A deviation that high would suggest a poorly designed filter. Since the

inertial sensor remains static throughout the simulation, the user sets the orientation

quaternion which represents the orientation of the sensor in space. For the test runs

performed in this thesis, an orientation quaternion representing alignment along the x-axis,

(0 1 0 0), was chosen. This choice was arbitrary; any quaternion would work just as well.

The known orientation quaternion of the sensor is then used to compute the output of the

simulated inertial sensors and magnetometer. Using the outputs from the simulated inertial

system and the initial orientation quaternion estimate, the filter calculates corrections to the

error. If working properly, the filter should respond by gradually converging upon the

orientation quaternion of the sensor, in this case (0 1 0 0).

The speed at which the filter converges depends upon the convergence method used.

Two different iterative convergence methods were tested in the filter. The “method of

steepest descent”, utilizing the mathematical notion of a gradient, was used and applied as

90°

90°

34

described in the previous chapter. Also implemented was theGauss-Newton method

[MCGH67] given by

(eq. 4.1)

where X represents the same matrix given in (eq. 3.29)

and is the gradient given by (eq. 3.32)

Substituting (eq. 3.32) into (eq. 4.1) yields

(eq. 4.2)

When using the Gauss-Newton method, (eq. 4.2) represents the output from the top-half of

the filter and is used to correct the rate output from the angular rate sensor in the lower left-

hand portion of Figure 8. It should be noted, however, that the form of the Gauss-Newton

equation in (eq. 4.2), with a scalar multiplier of -1, is only applied to noiseless, perfect data.

That is, (eq. 4.2) treats accelerometer and magnetometer data as if they were perfect

measurements of m and n, the gravity and magnetic field vectors, respectively. Since in the

real world this is hardly ever the case, when dealing with data corrupted by noise, a scalar

multiplier is used, defined as

(eq. 4.3)

∆q
1
2

X
T

X

1–
φ∇–=

Xij
T ∂yi

∂q̂ j

4x6

=

φ∇

∇φ q̂() ∂φ
∂q̂0
--------- ∂φ

∂q1
--------- ∂φ

∂q2
--------- ∂φ

∂q3
---------, , , 

 T
2X4x6

T ε q̂()6x1= =

∆q4x1 X
T

X 4x4

1–
X4x6

T ε q̂()6x1–=

α

α k∆t=

35

where . The resulting numerical integration equation becomes

(eq. 4.4)

yielding the next approximation for the orientation quaternion.

A. THE SIMULATION MODEL

The quaternion filter takes five inputs, namely, accelerometer, angular rate, and

magnetometer sensor output describing measured orientation data, a delta-t, and the last

computed value of the orientation quaternion, q-hat. Accelerometer output is defined as a

vector of three components, , given by [MCGH96B]

(eq. 4.5)

(eq. 4.6)

(eq. 4.7)

To remain a purely quaternion implementation, the Euler angle representations for the

gravity vector components in (eqs. 4.5, 4.6, 4.7) are replaced by equivalent quaternion

expressions. This is done by rotating the earth-based gravity vector, m, into body

coordinates using the orientation quaternion of the inertial sensor. The resulting quaternion

representation for the gravity vector, in body coordinates, is analogous to the

, terms above. The Lisp implementation of the

quaternion representation for (eqs. 4.5, 4.6, 4.7) is shown in Figure 11, taken from the take-

accelerometer-reading method of the inertial-sensor class located in the file sensor.lsp in

Appendix C.

0 α 1< <

q̂n 1+ q̂n
1
2
---q̂n ωB ∆t α X

T
X[]

1–
X

Tε q̂n()+ +=

ẋ̇a ẏ̇a ż̇a()

ẋ̇a u̇ qw rv– g θsin+ +=

ẏ̇a v̇ ur pw– g φ θcossin–+=

ż̇a ẇ pv uq– g φ θcoscos–+=

g θ g φ θcossin–,sin g φ θcoscos–

36

(body-gravity-vector (rotate-vector
(quaternion-inverse (orientation-quaternion

inertial-sensor)) *m*))

(ax (+ u-dot (* w q) (* -1 v r) (second body-gravity-vector)))
(ay (+ v-dot (* u r) (* -1 w p) (third body-gravity-vector)))
(az (+ w-dot (* v p) (* -1 u q) (fourth body-gravity-vector))))

Figure 11: Code Fragment Showing Accelerometer Output Using
Quaternions.

Note that (eq. 3.19)

is a rotation of a vector, p, from body coordinates to earth coordinates. Since the gravity

vector is rotated from earth coordinates to body coordinates, the inverse of (eq. 3.19) is

applied, namely,

(eq. 4.8)

This is done by using the functionrotate-vector(). rotate-vector() takes a unit quaternion

and an arbitrary vector and applies the quaternion rotation in (eq. 3.19). To effect the

reverse rotation, as is required for the gravity vector, the inverse of the orientation

quaternion is passed torotate-vector() as shown in Figure 11. The resulting rotation is the

desired earth-to-body vector rotation given in (eq. 4.8).

Magnetometer output is generated by a magnetometer class [FREY96B, MCGH96C].

Analogous to the simulated accelerometer reading, simulation of the magnetometer

requires that the earth’s magnetic field vector, n, expressed in earth coordinates, be rotated

to body coordinates. Before this can be done, however, the magnetometer simulation

protated qpq
1–

=

mbody q
1–

mearthq=

37

incorporates thedeviation anddip angle [FREY96B] characteristics of the earth’s magnetic

field in the local Monterey, California area. Magnetic deviation is defined as the difference

between the north compass heading and the true geographic north at a given location on the

earth’s surface. Monterey requires a correction of [FREY96B, MCGH96C]. The lines

of earth’s magnetic force are parallel to the surface at the earth’s equator. However, as the

lines approach the magnetic poles, they become increasingly vertical. Dip angle, is the

correction for the measure of the local downward deflection of the magnetic field. In

Monterey, a correction of is applied [FREY96B, MCGH96C]. The correction for the

deviation and dip angle [FREY96B, MCGH96C] to the magnetic field vector is

implemented in the code fragment shown in Figure 12.

(defun earth-magnetic-field-unit-vector (deviation dip-angle)
 (rest (rotate-vector (equivalent-quaternion deviation (- dip-angle) 0)

'(0 1 0 0))))

;normalized earth magnetic field vector in earth coordinates for Monterey, CA.
(setf *n* (cons 0

(earth-magnetic-field-unit-vector (deg-to-rad 15) (deg-to-rad 60))))

Figure 12: Deviation and Dip Angle Corrections for the Earth’s
Local Magnetic Field [FREY96B, MCGH96C].

Once corrected, the normalized magnetic field vector, n, is rotated to body coordinates

using the rigid body’s orientation quaternion, similar to the gravity vector, m, in the

accelerometer simulation. Angular rate sensor output, for this implementation, was kept at

(0 0 0), since the inertial sensor remains static throughout the simulation. Together, the

values calculated for each sensor simulates the output from an inertial sensor at rest and

constitutes the measured orientation vector in the quaternion filter.

15°

60°–

38

B. SIMULATION RESULTS

Each convergence method has its own test-filter function used to begin the simulation.

The user provides values for k (gradient method), or multiplier (Gauss-Newton method),

the desired initial offset of the estimated quaternion from the orientation of the sensor,

maximum number of iterations, an error tolerance, and a delta-t for the Euler integration

portion of the filter. The test-filter function for the gradient method is shown below in

Figure 13.

(defun test-filter-gradient (k-value offset iterations error-threshold delta-t)
(setf *k* k-value)
(setf Sensor (make-instance 'inertial-sensor))
(initialize Sensor)
(calibrate-magnetometer Sensor -1 1 -1 1 -1 1)
(let* ((accelerometer (take-accelerometer-reading Sensor))

(magnetometer (take-magnetometer-reading Sensor))
(angular-rate (take-angular-rate-sensor-reading Sensor))
(q-hat offset)
(delta-t delta-t)
(error 1))

(do ((x 1 (1+ x)))
((> x iterations))
(format t "~%~%********* Iteration ~A **********~%" x)
(if (>= error error-threshold)

(setf output (quaternion-filter-gradient accelerometer
magnetometer
angular-rate
q-hat
delta-t)

q-hat (firstn 4 output)
error (error-difference (lastn 6 output)))

(setf x (1+ iterations))))))

Figure 13: Gradient Convergence Method.

The function instantiates an instance of an inertial sensor, which has a super class of

quaternion-rigid-body. Associated with the new inertial sensor object is a slot, inherited

from quaternion-rigid-body, calledposture. Posture is a vector containing both position

39

and orientation information, (xe ye ze q0 q1 q2 q3), for the object instance. The default

posture is set to (0 0 0 0 1 0 0), corresponding to a position at the origin of the earth

coordinate system and an orientation quaternion of (0 1 0 0), as shown in Figure 14 below.

(defclass quaternion-rigid-body ()
(

;the vector (xe ye ze q0 q1 q2 q3).
(posture

:initform '(0 0 0 0 1 0 0)
:initarg :posture
:accessor posture)

Figure 14: Posture Slot Default Value.

The quaternion-rigid-body class also has a slot calledorientation-quaternion. Orientation-

quaternion contains the last four values of the slot posture, corresponding to the quaternion

portion of the rigid body state. This slot is then used to rotate all vectors within the filter

implementation.

After the test function initializes the sensor and calibrates the magnetometer, readings

from each of the three sensors of the inertial tracking system are taken. These values are

assigned to variables corresponding to each of the three different sensors. This is done only

once in this implementation of the simulation because the sensor remains static. Therefore,

the posture of the sensor does not change, requiring no updates to the filter be made. A real

system would need to take readings from the individual sensors on every iteration to correct

for varying orientations of a moving sensor package.

The test function then enters a loop which calls the appropriate version ofquaternion-

filter() until one of two conditions are met. The loop can either terminate after completing

the maximum number of iterations, whether or not the filter has converged, or when the

orientation-quaternion estimation is within the specified error-tolerance. The values of all

40

critical variables are printed on every iteration to allow for easy evaluation of filter

performance.

As mentioned above, two convergence methods were tested in the implementation of

the quaternion filter. The gradient method, presented in Chapter 3, guarantees that a linear

convergence to a local minimum will occur given a sufficiently small value for k. The

value of k represents the size of the step taken along the gradient vector towards the

minimum value, where the gradient vector lies perpendicular to the contour lines of a given

surface. Large values for k mean large steps with faster convergence, but the possibility of

overshooting the local minimum. Small values for k mean smaller steps with slower

convergence, and a reduced chance of overshooting. An optimal value for k can be chosen

using a method called the Newton-Raphson iteration [MCGH67]. This method was not

used in the this simulation and is beyond the scope of this thesis. Filter performance, using

the gradient method, was good. The filter was given a fairly large error. Specifically, an

offset of from the orientation quaternion of (0 1 0 0), given by (0 .939692621

.342020143 0), was used to initialize the filter. The filter converged in an acceptable

number of iterations with k values in the range , averaging 22 iterations,

with the best performance at ,17 iterations. Using an error of , (0

.9848077530 .173648177 0), yielded better results, as expected. The same range of k

values averaged 15 iterations to converge with being the best, converging in 12

iterations. The complete test runs are included in Appendix D.

20°

0.7 k 1.2≤ ≤

k 1.2= 10°

k 1.2=

41

Test runs using the Gauss-Newton method well out-performed the gradient method.

Gauss-Newton converges quadratically [MCGH67], often requiring only one iteration for

small errors. Test runs, similar to the gradient method, were performed using the perfect

sensor multiplier of -1. It should be noted that the call totest-filter-gauss-newton() is made

with the multiplier set to 10 vice 1. Referring to (eq. 4.3)

the multiplier is expressed as the product of a constant, , and . Since delta-t is

treated as a separate variable in the code, set to 0.1 in this simulation, the value given to the

multiplier should cause (eq. 4.3) to equal 1 when performing the numerical integration in

(eq. 4.4)

Therefore, a value of 10 for the variablemultiplier yields the correct value for (eq. 4.3).

Also, is actually negative, but this is taken care of in the code, when calculating the value

of (eq. 4.2)

as shown in Figure 15

(delta-q (scalar-multiply-vector (* -1 multiplier)
 (post-multiply X-squared-inv (post-multiply X-trans error))))

Figure 15: Gauss-Newton Equation.

α k∆t=

α k ∆t

q̂n 1+ q̂n
1
2
---q̂n ωB ∆t α X

T
X[]

1–
X

Tε q̂n()+ +=

α

∆q4x1 X
T

X 4x4

1–
X4x6

T ε q̂()6x1–=

42

This was done in order to simplify the function call, avoiding inadvertent calls with positive

values for the multiplier. Using the same and errors for the initial orientation

quaternion estimation as the gradient method test runs, the Gauss-Newton method gave the

following results, shown in Figure 16 and Figure 17.

(test-filter-gauss-newton 10 10-degrees 10 .001 .1)

initial q-hat (0 0.984807753 0.173648177 0)

********* Iteration 1 **********
new-q-hat (5.62901044742602E-4 0.999968870927989 0.0045325612552949 -
0.00643398833417277)
********* Iteration 2 **********
new-q-hat (-2.78220979546233E-5 0.999999999558864 -6.85807994618875E-6 -
7.82114313870801E-6)

Figure 16: Gauss-Newton Iteration with 10-degrees Error

(test-filter-gauss-newton 10 20-degrees 10 .001 .1)

initial q-hat (0 0.939692621 0.342020143 0)

********* Iteration 1 **********
new-q-hat (-0.00212904587800956 0.999131190052156 0.0337658829594332 -
0.0243351058469248)
********* Iteration 2 **********
new-q-hat (-7.57124440093844E-4 0.999999679561069 -1.35855048017928E-4 -
2.21774091515007E-4)
********* Iteration 3 **********
new-q-hat (-1.06750499371424E-8 0.999999999999999 -1.43682207139414E-8
4.92518736799743E-8)

Figure 17: Gauss-Newton Iteration with 20-degrees Error.

C. SUMMARY

The theory presented in Chapter 3 has been shown to be sound, as evidenced by the

results obtained in the test runs presented. Two methods of convergence were successfully

implemented. The gradient method showed acceptable results, converging quickly for

large errors in the initial estimation of the orientation quaternion. Gauss-Newton, on the

other hand, resulted in quadratic convergence, requiring only 9 iterations to converge for

10° 20°

43

an initial error of ! Given the initial test results, it can be concluded that, the quaternion

filter is a viable alternative to Euler angle based filters, especially in the realm of human

body tracking. The errors used in the test runs were much larger than should ever be

encountered in an actual inertial tracking system implementation. The quaternion filter,

given a reasonably accurate inertial tracking system, should never allow the orientation

quaternion to be off as much as was shown in this thesis. The next chapter presents the

results of quantitative and qualitative analysis done on an existing inertial tracking system,

the Angularis inertial tracker, manufactured by InterSense, Inc. [INTE97].

89°

44

45

V. RESULTS

A. ANGULARIS INERTIAL TRACKING SYSTEM

The Angularis tracker is a palm-sized plastic block which contains three orthogonal

angular rate sensors, three orthogonal accelerometers, and a two-axis magnetometer to

determine the angular orientation of the human head [FREY96A]. Built initially for HMD

applications, the extensibility of the Angularis to entire body tracking is quickly becoming

a possibility. Inertial systems, like the Angularis, do not suffer from the traditional

shortcomings of sensors based on mechanical, electromagnetic and acoustic technologies.

They are self-contained, requiring no outside source to calculate spatial orientation, making

them immune to outside interference and extending their range beyond that of any

traditional tracking system. Until recently, the only limitation to applying inertial

navigation technology to body tracking was the fact that inertial sensors were big, bulky

unwearable devices. However, with the advent of state-of-the-art, micro-machined inertial

sensor components, this concern is no longer a factor.

The question being investigated is whether or not the Angularis, in its present

configuration, would be applicable to human body limb segment tracking within a VE

simulation. Since the sensor was originally built to be worn as a head tracking device,

inherent assumptions in the design of the sensor and filtering technique could possibly

prove to be a limiting factor in extending its use to entire body tracking.

The system consists of the inertial tracker and a computer processing unit which

receives data from the sensor, processes it, and delivers filtered orientation data to the host

computer via an RS-232 cable connection. In its present configuration, data from the

46

individual sensors, within the plastic block, is inaccessible. A “hard-coded” Kalman

filtering technique is used to filter data from the sensor [INTE96]. The filter is “hard-

coded” in the sense that it is impossible to apply any outside filter, such as the quaternion

filter, to the sensor output. The only choice given to the user is between full-order or

reduced-order Kalman filtering [INTE96]. Reduced-order is the default, allowing the

system to run above 500 Hz and delivering almost the same performance as full-order

Kalman filtering [INTE96]. Once the filtered data is passed to the host computer, VE

software running on the host can use the orientation data to update graphical

representations of tracked objects.

In order to test the performance of the Angularis sensor, mechanical tilt-table tests

were performed at varying rates of rotation. The sensor was strapped onto the tilt-table and

allowed to measure the roll angle as the unit was rotated through . The roll was

performed two times at each rate, allowing the sensor to stabilize at the end of each roll for

20 seconds. The results are shown in Figure 18, Figure 19, and Figure 20. The Angularis

performed well, evidenced by the outputs shown on the graphs. However, the sensor does

not correct for errors at the end of the roll as in the SANS filter tests by [BACH96A,

ROBE97]. Specifically, while the SANS filter graphs show a gradual correction being

applied to the angle as the system stabilizes at the end of the roll, no such corrections are

made by the Angularis. Whatever angle is returned at the end of the roll, no matter what

the error, the sensor “locks on” to that reading and does not correct. This is shown by the

flat line at the end of each roll in the graphs. This lack of immediate correction for the error

45°

47

Figure 18: 45-Degree Roll at 10-Degrees/Second.

48

Figure 19: 45-Degree Roll at 45 Degrees/Second.

49

Figure 20: 45-Degree Roll at 90 Degrees/Second.

50

may be attributed to the fact that the sensor was originally designed for HMD applications.

In his paper, [FOXL94] explains the drift correction method applied to the first prototype

of the Angularis sensor. Using the heuristic that the human head pauses every 10 seconds

in a typical HMD simulation, [FOXL94] explains that this pause would allow the fluid-

filled inclinometer to settle to its correct pitch and roll in approximately 1/4 second. When

this occurred, the orientation values would be corrected and reset. However, the error

would not be corrected all at once. Gradual correction of the error was done to prevent

jarring the user, a real concern with HMD applications [FOXL94]. This design feature may

explain the output shown in the graphs above.

The fact that individual sensor outputs, from the components of the inertial system, are

not accessible makes the overall system limited in its application. It is doubtful that body

tracking applications would fare well with the current configuration. A qualitative test was

performed using the software provided by the manufacturer. The software represented the

sensor block as a virtual cube which moved in response to the movements applied to the

actual sensor. It was observed that the graphical representation would not correspond to

movements applied to the sensor after just a few arbitrary rotations. When the sensor was

placed flat on the table, the graphical representation manifested the errors which had

accumulated. This error could be corrected by jiggling the sensor until the graphical

representation matched the orientation of the actual sensor. This anomaly may be able to

be corrected if the system had allowed the application of an alternative filter. Graphs

representing the output from random rotations are shown in Figure 21 and Figure 22. The

51

Figure 21: Roll Angle for Random Motions.

52

Figure 22: Pitch Angle for Random Motions.

53

sensor was rotated arbitrarily and placed flat on a table and then rotated again. This was

repeated several times to simulate the random motions that may be encountered when

tracking a human within a VE. The figures clearly show that when the sensor was placed

in its reference position, flat on the table, it would report erroneous orientation data. This

is shown by the flat line portions of the graphs which represent no rotations being applied

to the sensor. Clearly, these lines are not at their reference position as they should be when

the sensor is at rest. These results are concurrent with the performance observed when

using the manufacturers graphical software. The error corrections being applied to the

sensor output could not keep up with the rapid random rotations being applied. Since

tracking human limb segments will doubtlessly encounter such random motions, for such

applications the sensor needs to be re-configured to allow the application of an alternative

filtering technique such as the quaternion filter presented in this thesis.

B. QUATERNION FILTER

The results of the tests performed on the implementation of the quaternion filter were

better than expected. The filter performed extremely well under extreme error conditions.

Deviations up to were corrected by the filter. Applying the Gauss-Newton iteration

method provided quadratic convergence to the correct orientation quaternion, in some

cases in only one iteration. Overall, the thesis was a success, in that the theory for the

quaternion filter was proven correct and an implementation of the filter now exists which

can be applied to any VE simulation incorporating inertial tracking sensors technology.

90°

54

The next, and final chapter, presents some final thoughts and recommendations for future

work relating to inertial tracking of limb segment angles.

55

VI. SUMMARY AND CONCLUSIONS

A. SUMMARY

In this thesis, a quaternion filter is presented as an alternative to filters using Euler

angles. This is because Euler angle implementations could encounter singularities that

make them undesirable for human body tracking applications. Specifically, filters

designed to use Euler angles experience divide-by-zero errors when calculating estimates

of orientation at elevation angles of (as shown in Figure 7). This limitation is critical

in simulations requiring the tracking of human limb segments which often rotate through

vertical orientations. The work of this thesis shows that the quaternion filter proposed by

[MCGH96A] provides a sound and viable solution to the Euler angle singularity problem,

while at the same time simplifying the required filter computations.

Two different quaternion filter convergence methods were implemented and tested.

The gradient descent method and the Gauss-Newton method [MCGH67] were tested under

extreme error conditions of up to . In both cases, the filter was able to quickly and

accurately correct to the appropriate orientation quaternion. The gradient descent method

provided gradual convergence, usually needing dozens of steps, while the Gauss-Newton

method converged quadratically, often requiring just a single iteration for small initial

errors. The results of the initial tests provide a decisive demonstration of the quaternion

filter’s applicability to VE simulations utilizing inertial sensors for human body tracking.

The Angularis inertial tracker [INTE97] was investigated as a possible alternative to

traditional tracking methods by mechanical, electromagnetic, and acoustic tracking

90± °

90°

56

technologies. The Angularis was built specifically as an inertial tracker for HMD

applications. It was one of the goals of this thesis to investigate the viability of extending

the use of the Angularis inertial sensor to human limb segment tracking. Tilt-table tests

resulted in very accurate readings when this tracker was given steady, consistent rotations

(shown in Figures 18, 19, and 20). However, when tested by hand, using rapid random

rotations and orientations, the system had difficulty returning to its reference position

(shown in Figures 21 and 22). These results suggest that the Angularis inertial system, in

its current configuration, would not perform as well as would be required for human limb

segment tracking applications. However, it is the author’s understanding that this

limitation can be removed by the manufacturer at the request of users.

B. CONCLUSIONS

It has be shown that filters based on quaternions have significant advantages for human

body tracking in comparison to the more common Euler angle approach to attitude

estimation. Two different convergence methods were investigated and tested in

implementing the quaternion filter. Although both yielded acceptable results, the Gauss-

Newton method was shown to be superior. Resulting in quadratic convergence, Gauss-

Newton appears to be the preferred convergence method for further investigations

concerning quaternion filters.

The integration of the quaternion filter with the Angularis inertial system proved to be

an impossibility. The system, as it currently exists, does not allow for the application of

independent filtering software. Better filtering techniques are required if the sensor is to be

applied to human limb segment tracking. It has been demonstrated that a filter using

57

quaternions would be a viable solution to the filtering deficiencies experienced in the

Angularis tests. A coupling of both entities could result in a very competitive system.

C. FUTURE WORK

The quaternion filter still requires extensive testing under realistic conditions using

actual inertial sensors implemented in a VE simulation. This thesis presented a simulation

incorporating “perfect sensors”. No attempt was made to reproduce noise levels similar to

those present in real sensor output. Research of the effects of noise on the filter’s

performance is still needed and required. Also, the use of dynamic objects must be

investigated. The current evaluation was conducted using a simulated static sensor with a

constant orientation. This type of simulation does not realistically demonstrate the

environment in which the filter will be required to operate. In order to be useful, the filter

must be capable of performing under the dynamic conditions of a typical VE simulation.

The Angularis sensor could also be further improved by reducing its current size. The

Angularis is certainly an improvement over traditional inertial systems, but is still a bit too

large for reasonable incorporation into a body suit capable of tracking an entire human

body. It is the author’s opinion that, notwithstanding the current limitations of the

Angularis sensor, the cutting edge tracking systems of the future will incorporate similar

inertial sensors with filtering being done by a quaternion filter similar to, if not the same as,

the one presented in this thesis. It is hoped that the work of this thesis makes a significant

contribution toward the realization of such systems.

58

59

APPENDIX A. DERIVATION OF X MATRIX

The X matrix is defined by (eq. 3.29) as

The elements of the 4x6 matrix come from the partial derivatives of the components of the

computed measurement vector, , given by (eq. 3.24)

So, taking the partial derivative of (eq. 3.24) with respect to q0, the result is

(eq. A.1)

Applying the product rule to (eq. A.1), it follows that

(eq. A.2)

where

(eq. A.3)

and

(eq. A.4)

Xij
T ∂yi

∂q̂ j

4x6

=

y q̂()

y q̂() q̂
1–
mq̂ q̂

1–
nq̂,()=

∂y
∂q̂0

∂
∂q̂0
--------- q̂

1–
mq̂ q̂

1–
nq̂,()=

∂y
∂q̂0

∂q̂
1–

∂q̂0
-----------mq̂ q̂

1–
m

∂q̂
∂q̂0
--------- ∂q̂

1–

∂q̂0
-----------nq̂ q̂

1–
n

∂q̂
∂q̂0
---------+,+

 
 
 

=

∂q
∂q0
--------- 1 0 0 0()=

∂q
1–

∂q0
----------- 1 0 0 0()=

60

Likewise, for q1, q2, and q3.

(eq. A.5)

(eq. A.6)

(eq. A.7)

where the corresponding quaternion partial derivatives are

(eq. A.8)

(eq. A.9)

(eq. A.10)

and, the partial derivatives of the inverse are given by

(eq. A.11)

(eq. A.12)

∂y
∂q̂1

∂q̂
1–

∂q̂1
-----------mq̂ q̂

1–
m

∂q̂
∂q̂1
--------- ∂q̂

1–

∂q̂1
-----------nq̂ q̂

1–
n

∂q̂
∂q̂1
---------+,+

 
 
 

=

∂y
∂q̂2

∂q̂
1–

∂q̂2
-----------mq̂ q̂

1–
m

∂q̂
∂q̂2
--------- ∂q̂

1–

∂q̂2
-----------nq̂ q̂

1–
n

∂q̂
∂q̂2
---------+,+

 
 
 

=

∂y
∂q̂3

∂q̂
1–

∂q̂3
-----------mq̂ q̂

1–
m

∂q̂
∂q̂3
--------- ∂q̂

1–

∂q̂3
-----------nq̂ q̂

1–
n

∂q̂
∂q̂3
---------+,+

 
 
 

=

∂q
∂q1
--------- 0 1 0 0()=

∂q
∂q2
--------- 0 0 1 0()=

∂q
∂q3
--------- 0 0 0 1()=

∂q
1–

∂q1
----------- 0 1– 0 0()=

∂q
1–

∂q2
----------- 0 0 1– 0()=

61

(eq. A.13)

The partial derivatives as defined in (eq. A.2), (eq. A.5), (eq. A.6), and (eq. A.7) result in

the partial derivatives of them andn vectors with respect to q0, q1, q2, and q3, respectively.

Taking the results computed above, the X6x4 matrix can be constructed as follows

(eq. A.14)

Note that the partial derivatives are column vectors in the X matrix, and that the transpose

of X is required when applied in the filter. Thus, (eq. 3.29) becomes

∂q
1–

∂q3
----------- 0 0 0 1–()=

X ∂y
∂q̂0
--------- ∂y

∂q̂1
--------- ∂y

∂q̂2
--------- ∂y

∂q̂3

6x4

=

X
T

∂y
∂q̂0

∂y
∂q̂1

∂y
∂q̂2

∂y
∂q̂3

4x6

=

62

63

APPENDIX B. DERIVATION OF GRADIENT

In the filter the gradient of the error criterion function , is given by (eq. 3.32)

where is given by (eq. 3.26)

In order to simplify the derivation of the gradient, consider the case of 1 dimensional

orientation vectors, where the measured vector is and the calculated vector

is . The error then becomes

(eq. B.1)

and

(eq. B.2)

Taking the partial derivative of (eq. B.2) with respect to yields

(eq. B.3)

Likewise, for the partial derivatives with respect to , , and . Thus, extending this

result to the 6 dimensional case and arranging the partial derivatives in matrix form yields

(eq. 3.32).

φ q̂()

∇φ q̂() ∂φ
∂q̂0
--------- ∂φ

∂q1
--------- ∂φ

∂q2
--------- ∂φ

∂q3
---------, , , 

 T
2X4x6

T ε q̂()6x1= =

φ q̂()

φ q̂()1x1 εT
q̂()1x6ε q̂()6x1=

y0 h1()=

y q̂() ĥ1()=

ε q̂() ĥ1 h1–=

φ q̂() ε2
ĥ1 h1–()

2
ĥ1

2
2h1ĥ1– h1

2
+= = =

q0

∂φ
∂q̂0
--------- 2ĥ1

∂ĥ1
∂q̂0
--------- 2h1

∂ĥ1
∂q̂0
---------– 2

∂ĥ1
∂q̂0
--------- ĥ1 h1–() 2

∂ĥ1
∂q̂0
---------ε q̂()= = =

q1 q2 q3

64

65

APPENDIX C. SIMULATION MODEL CODE

File: test-filter.lsp

; positive offsets from the positive x-axis
(setf 0-degrees '(0 1 0 0))
(setf 1-degree '(0 0.9998477 0.017452406 0))
(setf 2-degrees '(0 0.99939083 0.034899497 0))
(setf 3-degrees '(0 0.99862953 0.052335956 0))
(setf 4-degrees '(0 0.99756405 0.069756474 0))
(setf 5-degrees '(0 .9961946981 .0871557427 0))
(setf 10-degrees '(0 .9848077530 .173648177 0))
(setf 20-degrees '(0 .939692621 .342020143 0))
(setf 30-degrees '(0 .8660254037 .5 0))
(setf 40-degrees '(0 .766044443119 .642787609687 0))
(setf 50-degrees '(0 .642787609687 .766044443119 0))
(setf 60-degrees '(0 .5 .8660254037 0))
(setf 70-degrees '(0 .342020143 .939692621 0))
(setf 80-degrees '(0 .173648177 .9848077530 0))
(setf 85-degrees '(0 .0871557427 .9961946981 0))
(setf 89-degrees '(0 .017452406 .999847695 0))
(setf 90-degrees '(0 0 1 0))

(defun error-difference (error)
 (apply #'+ (mapcar #'square error)))

(defun test-filter-gradient (k-value offset iterations error-threshold delta-t)
 (setf *k* k-value)
 (setf Sensor (make-instance 'inertial-sensor))
 (initialize Sensor)
 (calibrate-magnetometer Sensor -1 1 -1 1 -1 1)
 (let* ((accelerometer (take-accelerometer-reading Sensor))
 (magnetometer (take-magnetometer-reading Sensor))
 (angular-rate (take-angular-rate-sensor-reading Sensor))
 (q-hat offset)
 (delta-t delta-t)
 (error 1))
 (format t "~%initial q-hat ~A ~%" q-hat)
 (do ((x 1 (1+ x)))
 ((> x iterations))
 (format t "~%~%********* Iteration ~A **********~%" x)
 (if (>= error error-threshold)
 (setf output (quaternion-filter-gradient accelerometer

magnetometer
angular-rate
q-hat
delta-t)

 q-hat (firstn 4 output)
 error (error-difference (lastn 6 output)))

66

 (setf x (1+ iterations))))))

(defun test-filter-gauss-newton (multiplier offset iterations error-threshold delta-t)
 (setf Sensor (make-instance 'inertial-sensor))
 (initialize Sensor)
 (calibrate-magnetometer Sensor -1 1 -1 1 -1 1)
 (let* ((accelerometer (take-accelerometer-reading Sensor))
 (magnetometer (take-magnetometer-reading Sensor))
 (angular-rate (take-angular-rate-sensor-reading Sensor))
 (q-hat offset)
 (delta-t delta-t)
 (error 1))
 (format t "~%initial q-hat ~A ~%" q-hat)
 (do ((x 1 (1+ x)))
 ((> x iterations))
 (format t "~%~%********* Iteration ~A **********~%" x)
 (if (>= error error-threshold)
 (setf output (quaternion-filter-gauss-newton multiplier

accelerometer
magnetometer
angular-rate
q-hat
delta-t)

 q-hat (firstn 4 output)
 error (error-difference (lastn 6 output)))
 (setf x (1+ iterations))))))

67

File: sensor.lsp

(defclass inertial-sensor (quaternion-rigid-body)
 ((accelerometer
 :initform '(0 0 0)
 :accessor accelerometer)
 (angular-rate-sensor
 :initform '(0 0 0)
 :accessor angular-rate-sensor)
 (magnetometer
 :initform (make-instance '3-axis-magnetometer)
 :accessor magnetometer)))

(defmethod take-accelerometer-reading ((inertial-sensor inertial-sensor))
 (let* ((u (first (velocity inertial-sensor)))
 (v (second (velocity inertial-sensor)))
 (w (third (velocity inertial-sensor)))
 (p (fourth (velocity inertial-sensor)))
 (q (fifth (velocity inertial-sensor)))
 (r (sixth (velocity inertial-sensor)))
 (u-dot (first (velocity-growth-rate inertial-sensor)))
 (v-dot (second (velocity-growth-rate inertial-sensor)))
 (w-dot (third (velocity-growth-rate inertial-sensor)))
 (q1 (fifth (posture inertial-sensor)))
 (q2 (sixth (posture inertial-sensor)))
 (q3 (seventh (posture inertial-sensor)))
 (body-gravity-vector (rotate-vector
 (quaternion-inverse (orientation-quaternion
 inertial-sensor)) *m*))

 (ax (+ u-dot (* w q) (* -1 v r) (second body-gravity-vector)))
 (ay (+ v-dot (* u r) (* -1 w p) (third body-gravity-vector)))
 (az (+ w-dot (* v p) (* -1 u q) (fourth body-gravity-vector))))

 (setf (accelerometer inertial-sensor)
 (normalize-vector (list ax ay az)))
 (accelerometer inertial-sensor)))

(defmethod take-angular-rate-sensor-reading ((inertial-sensor inertial-sensor))
 (setf (angular-rate-sensor inertial-sensor)
 (cons (fourth (velocity inertial-sensor))
 (cons (fifth (velocity inertial-sensor))
 (list (sixth (velocity inertial-sensor))))))
 (angular-rate-sensor inertial-sensor))

; Max and min raw output over all orientations.
(defmethod calibrate-magnetometer
 ((inertial-sensor inertial-sensor) xmin xmax ymin ymax zmin zmax)
 (setf (x-bias (magnetometer inertial-sensor)) (/ (+ xmax xmin) 2)
 (y-bias (magnetometer inertial-sensor)) (/ (+ ymax ymin) 2)
 (z-bias (magnetometer inertial-sensor)) (/ (+ zmax zmin) 2)

68

 (x-scale-factor (magnetometer inertial-sensor)) (/ (- xmax xmin) 2)
 (y-scale-factor (magnetometer inertial-sensor)) (/ (- ymax ymin) 2)
 (z-scale-factor (magnetometer inertial-sensor)) (/ (- zmax zmin) 2)))

(defmethod normalize-magnetometer-measurement-vector
((inertial-sensor inertial-sensor))

 (let* ((vx (x-reading (magnetometer inertial-sensor)))
 (vy (y-reading (magnetometer inertial-sensor)))
 (vz (z-reading (magnetometer inertial-sensor)))
 (xbias (x-bias (magnetometer inertial-sensor)))
 (ybias (y-bias (magnetometer inertial-sensor)))
 (zbias (z-bias (magnetometer inertial-sensor)))
 (xscale (x-scale-factor (magnetometer inertial-sensor)))
 (yscale (y-scale-factor (magnetometer inertial-sensor)))
 (zscale (z-scale-factor (magnetometer inertial-sensor)))
 (wx (normalize-reading vx xbias xscale))
 (wy (normalize-reading vy ybias yscale))
 (wz (normalize-reading vz zbias zscale)))
 (normalize-vector (list wx wy wz))))

(defmethod take-magnetometer-reading ((inertial-sensor inertial-sensor))
 (let* ((q-inv (quaternion-inverse (orientation-quaternion inertial-sensor)))
 (reading (rotate-vector q-inv *n*)))
 (setf (x-reading (magnetometer inertial-sensor)) (second reading)
 (y-reading (magnetometer inertial-sensor)) (third reading)
 (z-reading (magnetometer inertial-sensor)) (fourth reading)
 (magnetic-normal-vector (magnetometer inertial-sensor))
 (normalize-magnetometer-measurement-vector inertial-sensor))
 (magnetic-normal-vector (magnetometer inertial-sensor))))

(defclass 3-axis-magnetometer (quaternion-rigid-body)
 ((x-reading :accessor x-reading)
 (y-reading :accessor y-reading)
 (z-reading :accessor z-reading)
 (x-bias :accessor x-bias)
 (y-bias :accessor y-bias)
 (z-bias :accessor z-bias)
 (x-scale-factor :accessor x-scale-factor)
 (y-scale-factor :accessor y-scale-factor)
 (z-scale-factor :accessor z-scale-factor)
 (magnetic-normal-vector :accessor magnetic-normal-vector)))

(defun normalize-reading (value bias scale-factor)
 (/ (- value bias) scale-factor))

69

File: quaternion-filter

(defun earth-magnetic-field-unit-vector (deviation dip-angle)
 (rest (rotate-vector (equivalent-quaternion deviation (- dip-angle) 0)
 '(0 1 0 0))))

;normalized earth magnetic field vector in earth coordinates for Monterey, CA.
(setf *n* (cons 0 (earth-magnetic-field-unit-vector (deg-to-rad 15) (deg-to-rad 60))))

;normalized gravity vector in earth coordinates.
(setf *m* '(0 0 0 1))

;estimated sensor bias in body coordinates.
(setf *angular-rate-sensor-bias* '(0 0 0))

(defun calculated-measurement-vector (quaternion)
 (append (rest (rotate-vector (quaternion-inverse quaternion) *m*))
 (rest (rotate-vector (quaternion-inverse quaternion) *n*))))

(defun make-X-transpose-matrix (quaternion vector)
 (list (append (rest (partial-derivative-q0 quaternion (firstn 4 vector)))
 (rest (partial-derivative-q0 quaternion (cddddr vector))))
 (append (rest (partial-derivative-q1 quaternion (firstn 4 vector)))
 (rest (partial-derivative-q1 quaternion (cddddr vector))))
 (append (rest (partial-derivative-q2 quaternion (firstn 4 vector)))
 (rest (partial-derivative-q2 quaternion (cddddr vector))))
 (append (rest (partial-derivative-q3 quaternion (firstn 4 vector)))
 (rest (partial-derivative-q3 quaternion (cddddr vector))))))

; alternative way to compute partial derivatives
(defun make-X-transpose-matrix-2 (quaternion m n)
 (list (partial-derivative-q0-2 quaternion (append m n))
 (partial-derivative-q1-2 quaternion (append m n))
 (partial-derivative-q2-2 quaternion (append m n))
 (partial-derivative-q3-2 quaternion (append m n))))

(defun quaternion-filter-gradient (accelerometer
 magnetometer
 angular-rate
 q-hat delta-t)

 (let* ((measured-y (append accelerometer magnetometer))
 (calculated-y (calculated-measurement-vector q-hat))
 (error (vector-subtract calculated-y measured-y))
 (X-trans (make-X-transpose-matrix q-hat (append *m* *n*)))
 (gradient-phi (scalar-multiply-vector 2 (post-multiply X-trans error)))
 (K (scalar-multiply-matrix (* -1 *k*) (unit-matrix 4)))
 (omega (cons '0 (vector-subtract angular-rate *angular-rate-sensor-bias*)))
 (q-dot (scalar-multiply-vector 0.5 (quaternion-product q-hat omega)))
 (q-hat-dot (vector-add q-dot (post-multiply K gradient-phi)))
 (new-q-hat (normalize-vector (vector-add q-hat
 (scalar-multiply-vector delta-t q-hat-dot)))))

70

 (format t "~%q-hat ~A ~%" q-hat)
 (format t "~%measured-y ~A ~%" measured-y)
 (format t "~%calculated-y ~A ~%" calculated-y)
 (format t "~%error ~A ~%" error)
 (format t "~%gradient-phi ~A ~%" gradient-phi)
 (format t "~%new-q-hat ~A ~%" new-q-hat)
 (append new-q-hat error)))

(defun quaternion-filter-gauss-newton (multiplier
accelerometer
magnetometer
angular-rate
q-hat delta-t)

 (let* ((measured-y (append accelerometer magnetometer))
 (calculated-y (calculated-measurement-vector q-hat))
 (error (vector-subtract calculated-y measured-y))
 (X-trans (make-X-transpose-matrix q-hat (append *m* *n*)))
 (X-squared-inv (matrix-inverse (matrix-multiply X-trans (transpose X-trans))))
 (delta-q (scalar-multiply-vector (* -1 multiplier)
 (post-multiply X-squared-inv (post-multiply X-trans error))))
 (omega (cons '0 (vector-subtract angular-rate *angular-rate-sensor-bias*)))
 (q-dot (scalar-multiply-vector 0.5 (quaternion-product q-hat omega)))
 (q-hat-dot (vector-add q-dot delta-q))
 (new-q-hat (normalize-vector (vector-add q-hat
 (scalar-multiply-vector delta-t q-hat-dot)))))
 (format t "~%q-hat ~A ~%" q-hat)
 (format t "~%measured-y ~A ~%" measured-y)
 (format t "~%calculated-y ~A ~%" calculated-y)
 (format t "~%error ~A ~%" error)
 (format t "~%delta-q ~A ~%" delta-q)
 (format t "~%new-q-hat ~A ~%" new-q-hat)
 (append new-q-hat error)))

71

File: quat-rigid-body.lsp

(defconstant *gravity* 32.2185)
(defclass quaternion-rigid-body ()
 (
 ;the vector (xe ye ze q0 q1 q2 q3).
 (posture
 :initform '(0 0 0 0 1 0 0)
 :initarg :posture
 :accessor posture)

 ;the vector (xe-dot ye-dot ze-dot q0-dot q1-dot q2-dot q3-dot).
 (posture-rate
 :initarg :posture-rate
 :accessor posture-rate)

 ;the vector (u v w p q r) in body coordinates.
 (velocity
 :initform '(0 0 0 0 0 0)
 :initarg :velocity
 :accessor velocity)

 ;the vector (u-dot v-dot w-dot p-dot q-dot r-dot).
 (velocity-growth-rate
 :accessor velocity-growth-rate)

 ;the vector (Fx Fy Fz L M N) in body coordinates.
 (forces-and-torques
 :initform (list 0 0 (- *gravity*) 0 0 0)
 :accessor forces-and-torques)

 ;the vector (Ix Iy Iz) in principal axis coordinates.
 (moments-of-inertia
 :initform '(1 1 1)
 :initarg :moments-of-inertia
 :accessor moments-of-inertia)

 (mass
 :initform 1
 :initarg :mass
 :accessor mass)

 (orientation-quaternion
 :initform '(0 1 0 0)
 :accessor orientation-quaternion)

 (position-quaternion
 :initform '(0 0 0 0)
 :accessor position-quaternion)

 (time-stamp

72

 :accessor time-stamp)

 ;(0 x y z) in body coordinates for each node.
 (node-list
 :initform '((0 0 0 0) (0 5 5 0) (0 -5 5 0) (0 -5 -5 0) (0 5 -5 0))
 :initarg :node-list
 :accessor node-list)

 (polygon-list
 :initform '((1 2 3 4))
 :initarg :polygon-list
 :accessor polygon-list)

 ;(x y z 1) in earth coordinates.
 (transformed-node-list
 :accessor transformed-node-list)))

(defmethod initialize ((body quaternion-rigid-body))
 (setf (transformed-node-list body)
 (mapcar #' (lambda (node-location) (append (rest node-location) '(1)))
 (node-list body)))
 (setf (velocity-growth-rate body) (update-velocity-growth-rate body))
 (setf (posture-rate body) (earth-velocity body))
 (setf (time-stamp body) (get-constant-delta-t body)))

(defmethod quaternion-move ((body quaternion-rigid-body) x y z q0 q1 q2 q3)
 (setf (posture body) (list x y z q0 q1 q2 q3))
 (setf (orientation-quaternion body) (list q0 q1 q2 q3))
 (setf (position-quaternion body) (append '(0) (list x y z)))
 (transform-node-list body))

(defmethod get-constant-delta-t ((body quaternion-rigid-body)) 0.1)

(defmethod get-delta-t ((body quaternion-rigid-body))
 (let* ((new-time (get-internal-real-time))
 (delta-t (/ (- new-time (time-stamp body)) 1000)))
 (setf (time-stamp body) new-time)
 delta-t))

(defmethod update-rigid-body ((body quaternion-rigid-body))
 (let* ((delta-t (get-constant-delta-t body)))
 (update-posture body delta-t)
 (setf (orientation-quaternion body)
 (list (fourth (posture body)) (fifth (posture body))
 (sixth (posture body)) (seventh (posture body))))
 (setf (position-quaternion body)
 (list 0 (first (posture body))
 (second (posture body)) (third (posture body))))
 (transform-node-list body)
 (update-velocity body delta-t)
 (update-velocity-growth-rate body)))

73

(defmethod update-velocity-growth-rate ((body quaternion-rigid-body))
 (setf (velocity-growth-rate body)
 (multiple-value-bind
 (Fx Fy Fz L M N u v w p q r Ix Iy Iz)
 (values-list
 (append
 (forces-and-torques body)
 (velocity body)
 (moments-of-inertia body)))
 (list (+ (* v r) (* -1 w q) (/ Fx (mass body))
 (* -1 (second (rotate-vector
 (quaternion-inverse (orientation-quaternion body))
 (append '(0 0 0) (list *gravity*))))))
 (+ (* w p) (* -1 u r) (/ Fy (mass body))
 (third (rotate-vector
 (quaternion-inverse (orientation-quaternion body))
 (append '(0 0 0) (list *gravity*)))))
 (+ (* u q) (* -1 v p) (/ Fz (mass body))
 (fourth (rotate-vector
 (quaternion-inverse (orientation-quaternion body))
 (append '(0 0 0) (list *gravity*)))))
 (/ (+ (* (- Iy Iz) q r) L) Ix)
 (/ (+ (* (- Iz Ix) r p) M) Iy)
 (/ (+ (* (- Ix Iy) p q) N) Iz)))))

(defmethod update-velocity ((body quaternion-rigid-body) delta-t)
 (setf (velocity body)
 (vector-add (velocity body)
 (scalar-multiply-vector delta-t (velocity-growth-rate body)))))

(defmethod update-posture ((body quaternion-rigid-body) delta-t)
 (setf (posture-rate body) (earth-velocity body))
 (setf (posture body)
 (append (vector-add (firstn 3 (posture body))
 (scalar-multiply-vector delta-t (firstn 3 (posture-rate body))))
 (normalize-vector (vector-add (cdddr (posture body))
 (scalar-multiply-vector delta-t (cdddr (posture-rate body))))))))

(defmethod transform-node-list ((body quaternion-rigid-body))
 (setf (transformed-node-list body)
 (mapcar #'(lambda (node-location)
 (append (rest (vector-add
 (position-quaternion body)
 (rotate-vector (orientation-quaternion body)
 node-location)))
 '(1)))
 (node-list body))))

(defmethod earth-velocity ((body quaternion-rigid-body))
 (let* ((linear-velocity (append '(0) (firstn 3 (velocity body))))
 (rotational-velocity (append '(0) (cdddr (velocity body))))

74

 (linear-earth-velocity
 (rotate-vector (orientation-quaternion body) linear-velocity))
 (rotational-earth-velocity (scalar-multiply-vector 0.5
 (quaternion-product (orientation-quaternion body) rotational-velocity))))
 (append linear-earth-velocity rotational-earth-velocity)))

(defmethod print-body-posture ((body quaternion-rigid-body))
 (format t "~,2,,,F ~,2,,,F ~,2,,,F ~,2,,,F ~,2,,,F ~,2,,,F ~,2,,,F ~%"
 (first (posture body)) (second (posture body)) (third (posture body))
 (fourth (posture body)) (fifth (posture body)) (sixth (posture body))
 (seventh (posture body))))

(defmethod print-body-orientation-quaternion ((body quaternion-rigid-body))
 (format t "~,2,,,F ~,2,,,F ~,2,,,F ~,2,,,F ~%"
 (first (orientation-quaternion body)) (second (orientation-quaternion body))
 (third (orientation-quaternion body)) (fourth (orientation-quaternion body))))

75

File: partial-derivative.lsp

(defun partial-derivative-q0 (quaternion vector)
 (let ((q quaternion)
 (q-inv (quaternion-inverse quaternion))
 (partial-q0 '(1 0 0 0))
 (partial-q0-inv '(1 0 0 0))
 (v vector))
 (vector-add (quaternion-product partial-q0-inv (quaternion-product v q))
 (quaternion-product q-inv (quaternion-product v partial-q0)))))

; alternative method
(defun partial-derivative-q0-2 (quaternion vector)
 (let ((q0 (first quaternion))
 (q1 (second quaternion))
 (q2 (third quaternion))
 (q3 (fourth quaternion))
 (m1 (first vector))
 (m2 (second vector))
 (m3 (third vector))
 (n1 (fourth vector))
 (n2 (fifth vector))
 (n3 (sixth vector)))
 (list (+ (* 2 q0 m1) (* -2 q2 m3) (* 2 q3 m2))
 (+ (* 2 q0 m2) (* 2 q1 m3) (* -2 q3 m1))
 (+ (* 2 q0 m3) (* -2 q1 m2) (* 2 q2 m1))
 (+ (* 2 q0 n1) (* -2 q2 n3) (* 2 q3 n2))
 (+ (* 2 q0 n2) (* 2 q1 n3) (* -2 q3 n1))
 (+ (* 2 q0 n3) (* -2 q1 n2) (* 2 q2 n1)))))

(defun partial-derivative-q1 (quaternion vector)
 (let ((q quaternion)
 (q-inv (quaternion-inverse quaternion))
 (partial-q1 '(0 1 0 0))
 (partial-q1-inv '(0 -1 0 0))
 (v vector))
 (vector-add (quaternion-product partial-q1-inv (quaternion-product v q))
 (quaternion-product q-inv (quaternion-product v partial-q1)))))

; alternative method
(defun partial-derivative-q1-2 (quaternion vector)
 (let ((q0 (first quaternion))
 (q1 (second quaternion))
 (q2 (third quaternion))
 (q3 (fourth quaternion))
 (m1 (first vector))
 (m2 (second vector))
 (m3 (third vector))
 (n1 (fourth vector))
 (n2 (fifth vector))
 (n3 (sixth vector)))

76

 (list (+ (* 2 q1 m1) (* 2 q2 m2) (* 2 q3 m3))
 (+ (* 2 q0 m3) (* -2 q1 m2) (* 2 q2 m1))
 (+ (* -2 q0 m2) (* -2 q1 m3) (* 2 q3 m1))
 (+ (* 2 q1 n1) (* 2 q2 n2) (* 2 q3 n3))
 (+ (* 2 q0 n3) (* -2 q1 n2) (* 2 q2 n1))
 (+ (* -2 q0 n2) (* -2 q1 n3) (* 2 q3 n1)))))

(defun partial-derivative-q2 (quaternion vector)
 (let ((q quaternion)
 (q-inv (quaternion-inverse quaternion))
 (partial-q2 '(0 0 1 0))
 (partial-q2-inv '(0 0 -1 0))
 (v vector))
 (vector-add (quaternion-product partial-q2-inv (quaternion-product v q))
 (quaternion-product q-inv (quaternion-product v partial-q2)))))

; alternative method
(defun partial-derivative-q2-2 (quaternion vector)
 (let ((q0 (first quaternion))
 (q1 (second quaternion))
 (q2 (third quaternion))
 (q3 (fourth quaternion))
 (m1 (first vector))
 (m2 (second vector))
 (m3 (third vector))
 (n1 (fourth vector))
 (n2 (fifth vector))
 (n3 (sixth vector)))
 (list (+ (* -2 q0 m3) (* 2 q1 m2) (* -2 q2 m1))
 (+ (* 2 q1 m1) (* 2 q2 m2) (* 2 q3 m3))
 (+ (* 2 q0 m1) (* -2 q2 m3) (* 2 q3 m2))
 (+ (* -2 q0 n3) (* 2 q1 n2) (* -2 q2 n1))
 (+ (* 2 q1 n1) (* 2 q2 n2) (* 2 q3 n3))
 (+ (* 2 q0 n1) (* -2 q2 n3) (* 2 q3 n2)))))

(defun partial-derivative-q3 (quaternion vector)
 (let ((q quaternion)
 (q-inv (quaternion-inverse quaternion))
 (partial-q3 '(0 0 0 1))
 (partial-q3-inv '(0 0 0 -1))
 (v vector))
 (vector-add (quaternion-product partial-q3-inv (quaternion-product v q))
 (quaternion-product q-inv (quaternion-product v partial-q3)))))

; alternative method
(defun partial-derivative-q3-2 (quaternion vector)
 (let ((q0 (first quaternion))
 (q1 (second quaternion))
 (q2 (third quaternion))
 (q3 (fourth quaternion))
 (m1 (first vector))

77

 (m2 (second vector))
 (m3 (third vector))
 (n1 (fourth vector))
 (n2 (fifth vector))
 (n3 (sixth vector)))
 (list (+ (* 2 q0 m2) (* 2 q1 m3) (* -2 q3 m1))
 (+ (* -2 q0 m1) (* 2 q2 m3) (* -2 q3 m2))
 (+ (* 2 q1 m1) (* 2 q2 m2) (* 2 q3 m3))
 (+ (* 2 q0 n2) (* 2 q1 n3) (* -2 q3 n1))
 (+ (* -2 q0 n1) (* 2 q2 n3) (* -2 q3 n2))
 (+ (* 2 q1 n1) (* 2 q2 n2) (* 2 q3 n3)))))

78

File: quaternion-algebra.lsp

(defun quaternion-product (Q Q1)
 (let ((w (first Q)) (x (second Q)) (y (third Q)) (z (fourth Q))
 (w1 (first Q1)) (x1 (second Q1)) (y1 (third Q1)) (z1 (fourth Q1)))
 (list (- (* w w1) (* x x1) (* y y1) (* z z1))
 (+ (* x w1) (* w x1) (- (* z y1)) (* y z1))
 (+ (* y w1) (* z x1) (* w y1) (- (* x z1)))
 (+ (* z w1) (- (* y x1)) (* x y1) (* w z1)))))

(defun quaternion-inverse (Q)
 (list (first Q) (- (second Q)) (- (third Q)) (- (fourth Q))))

(defun rotate-vector (unit-quaternion vector) ;Vector is quaternion with leading
 (let* ((q unit-quaternion) (v vector) ;element zero.
 (q-inv (quaternion-inverse q)))
 (quaternion-product q (quaternion-product v q-inv))))

File: euler-to-quat.lsp

(defun equivalent-quaternion (azimuth elevation roll)
 (quaternion-product (set-quaternion-azimuth azimuth)
 (quaternion-product (set-quaternion-elevation elevation)
 (set-quaternion-roll roll))))

(defun set-quaternion-azimuth (angle)
 (list (cos (/ angle 2)) 0 0 (sin (/ angle 2))))

(defun set-quaternion-elevation (angle)
 (list (cos (/ angle 2)) 0 (sin (/ angle 2)) 0))

(defun set-quaternion-roll (angle)
 (list (cos (/ angle 2)) (sin (/ angle 2)) 0 0))

File: support-functions.lsp

(defun deg-to-rad (angle) (* 0.017453292519943295 angle))

(defun firstn (n list)
 (cond ((zerop n) nil)
 (t (cons (first list) (firstn (1- n) (rest list))))))

(defun lastn (n list)
 (cond ((zerop n) nil)
 (t (append (lastn (1- n) (firstn (1- (length list)) list)) (last list)))))

79

; this function not required for Allegro CL for Windows 95
;(defun square (value)
; (* value value))

File: vector-matrix-arithmetic.lsp

(defun augment (matrix)
 (concat-matrix matrix (unit-matrix (length matrix))))

(defun concat-matrix (A B) ;A and B are matrices with equal number of rows.
 (cond ((null A) B)
 (t (cons (append (car A) (car B)) (concat-matrix (cdr A) (cdr B))))))

(defun cycle-left (matrix) (mapcar 'row-cycle-left matrix))

(defun cycle-up (matrix) (append (cdr matrix) (list (car matrix))))

(defun dot-product (vector-1 vector-2)
 (apply '+ (mapcar '* vector-1 vector-2)))

(defun first-square (matrix) ;Returns leftmost square matrix from argument.
 (do ((size (length matrix))
 (remainder matrix (rest remainder))
 (answer nil (cons (firstn size (first remainder)) answer)))
 ((null remainder) (reverse answer))))

(defun matrix-inverse (M)
 (do ((M1 (max-car-first (augment M))
 (cond ((null M1) nil) ;Abort for singular matrix.
 (t (max-car-firstn n (cycle-left (cycle-up M1))))))
 (n (1- (length M)) (1- n)))
 ((or (minusp n) (null M1)) (cond ((null M1) nil) (t (first-square M1))))
 (setq M1 (cond ((zerop (caar M1)) nil) (t (solve-first-column M1))))))

(defun matrix-multiply (matrix1 matrix2)
 (cond ((null (rest matrix1)) (list (pre-multiply (first matrix1) matrix2)))
 (t (cons (pre-multiply (first matrix1) matrix2)
 (matrix-multiply (rest matrix1) matrix2)))))

(defun max-car-first (L) ;L is a list of lists. This function finds list with
 (cond ((null (cdr L)) L) ;largest car and moves it to head of list of lists.
 (t (if (> (abs (caar L)) (abs (caar (max-car-first (cdr L))))) L
 (append (max-car-first (cdr L)) (list (car L)))))))

(defun max-car-firstn (n list)
 (append (max-car-first (firstn n list)) (nthcdr n list)))

(defun normalize-row (row) (scalar-multiply-vector (/ 1.0 (car row)) row))

80

(defun normalize-vector (vector)
 (scalar-multiply-vector (/ 1 (norm vector)) vector))

(defun norm (vector)
 (sqrt (apply #'+ (mapcar 'square vector))))

(defun post-multiply (matrix vector)
 (cond ((null (rest matrix)) (list (dot-product (first matrix) vector)))
 (t (cons (dot-product (first matrix) vector)
 (post-multiply (rest matrix) vector)))))

(defun pre-multiply (vector matrix)
 (post-multiply (transpose matrix) vector))

(defun row-cycle-left (row) (append (cdr row) (list (car row))))

(defun scalar-multiply-vector (scalar vector)
 (cond ((null vector) nil)
 (t (cons (* scalar (first vector))
 (scalar-multiply-vector scalar (rest vector))))))

(defun scalar-multiply-matrix (scalar matrix)
 (if (not (null matrix))
 (cons (scalar-multiply-vector scalar (first matrix))
 (scalar-multiply-matrix scalar (rest matrix)))))

(defun solve-first-column (matrix) ;Reduces first column to (1 0 ... 0).
 (do* ((remaining-row-list matrix (rest remaining-row-list))
 (first-row (normalize-row (first matrix)))
 (answer (list first-row)
 (cons (vector-add (first remaining-row-list)
 (scalar-multiply-vector (- (caar remaining-row-list))
 first-row))
 answer)))
 ((null (rest remaining-row-list)) (reverse answer))))

(defun transpose (matrix) ;A matrix is a list of row vectors.
 (cond ((null (cdr matrix)) (mapcar 'list (car matrix)))
 (t (mapcar 'cons (car matrix) (transpose (cdr matrix))))))

(defun unit-vector (one-column length) ;Column count starts at 1.
 (do ((n length (1- n))
 (vector nil (cons (cond ((= one-column n) 1) (t 0)) vector)))
 ((zerop n) vector)))

(defun unit-matrix (size)
 (do ((row-number size (1- row-number))
 (I nil (cons (unit-vector row-number size) I)))
 ((zerop row-number) I)))

81

(defun vector-add (vector-1 vector-2) (mapcar '+ vector-1 vector-2))

(defun vector-subtract (vector-1 vector-2) (mapcar '- vector-1 vector-2))

82

83

APPENDIX D. SIMULATION MODEL TEST RUNS USING
GRADIENT DESCENT METHOD

; (test-filter k offset max-iterations error delta-t)
(test-filter-gradient .7 10-degrees 100 .001 .1)

(-0.0407968594779338 0.987814785044294 0.149793422179633 -0.0109314855508384)
(-0.0359642597292573 0.989548859847923 0.139308154984263 -0.00963659435083765)
(-0.0333988632303714 0.991038020142009 0.129027401800444 -0.00894919843069551)
(-0.0309292427815184 0.992317459265856 0.119502133414506 -0.00828746562581398)
(-0.028640593210504 0.993416060803329 0.110658722418457 -0.00767422382150284)
(-0.0265169460797078 0.994358901419598 0.10245361366174 -0.00710519428779732)
(-0.0245474425832684 0.995167708988955 0.0948440349768008 -0.00657746741643614)
(-0.0227215761042829 0.995861275313425 0.0877894286954169 -0.00608822796790491)
(-0.0210294198307998 0.996455827433058 0.0812514389056478 -0.00563481606095787)
(-0.0194616178249921 0.996965358929859 0.0751939171141162 -0.00521472477960978)
(-0.0180093776235814 0.997401923540244 0.0695828918480387 -0.00482559819042578)
(-0.0166644560347113 0.997775893916602 0.0643865138599456 -0.00446522753680484)
(-0.0154191404136762 0.998096188622346 0.0595749837789895 -0.00413154622182663)
(-0.014266226825664 0.998370470494064 0.0551204677384272 -0.0038226239569759)
(-0.0131989962170749 0.998605319423938 0.0509970053086573 -0.00353666037726664)
(-0.012211189464283 0.998806382453515 0.0471804130930396 -0.00327197835557808)
(-0.0112969819654345 0.9989785038606 0.0436481865581401 -0.00302701719454714)
(-0.010450958277847 0.999125837688725 0.0403794020401677 -0.00280032583068047)
(-0.00966808717378177 0.999251944930007 0.0373546203678796 -0.00259055615056851)

; (test-filter k offset max-iterations error delta-t)
(test-filter-gradient .8 10-degrees 100 .001 .1)

(-0.0466363024932462 0.988054619864193 0.146345377276698 -0.0124961595910389)
(-0.0336448060715241 0.990016369242001 0.13658090515966 -0.0090150986163666)
(-0.0325765093727223 0.991635692032407 0.124584238621996 -0.00872884937864585)
(-0.0294805106677434 0.992994225320679 0.114153271356649 -0.00789927902587894)
(-0.0270504960876294 0.994134027077225 0.104466602633617 -0.00724815858154155)
(-0.0247418690563448 0.995089762769567 0.0956046694999285 -0.00662956383288417)
(-0.0226411424543706 0.99589074670975 0.0874768239624286 -0.0060666758363666)
(-0.0207132620817334 0.996561746884026 0.080030255471763 -0.00555010184741466)
(-0.0189480025981257 0.997123653967104 0.0732093910107909 -0.00507710199435059)
(-0.0173314839560756 0.997594062141267 0.066963725303663 -0.0046439571296634)
(-0.0158516748037761 0.99798777087449 0.0612461657160251 -0.00424744346235262)
(-0.0144972763022684 0.998317215928941 0.0560131748731002 -0.00388453347764369)
(-0.01325788503816 0.998592837826888 0.0512245341425605 -0.00355243958931966)
(-0.0121239028963317 0.99882339562866 0.0468431637111396 -0.00324858999018542)
(-0.01108649410346 0.999016233289641 0.0428349239064057 -0.00297061714191452)
(-0.0101375328618482 0.999177505170899 0.0391684192251775 -0.00271634374357618)
(-0.00926955382915876 0.999312366554594 0.0358148057669039 -0.00248376946271993)

84

; (test-filter k offset max-iterations error delta-t)
(test-filter-gradient .9 10-degrees 100 .001 .1)

(-0.0524760351956661 0.988246613548474 0.142888723539894 -0.0140609112526659)
(-0.0294523105119354 0.99045708628517 0.134406258574449 -0.00789172281690377)
(-0.0328759984859507 0.992198765059205 0.11992989262179 -0.00880909724467732)
(-0.0276080858352448 0.993618707837281 0.109109729514156 -0.00739756430412296)
(-0.0257098919446979 0.994781415767648 0.0984960848930969 -0.00688894478407322)
(-0.022999109006359 0.995733538414442 0.0891503444354995 -0.00616259268488926)
(-0.0208838215796623 0.996512849414438 0.0805896639495956 -0.00559580312714617)
(-0.0188515043342893 0.997150421192263 0.0728707295195703 -0.00505124536248464)
(-0.0170522400191014 0.997671831074489 0.0658730719325037 -0.00456913394225991)
(-0.0154104027156919 0.998098107382105 0.0595452533353919 -0.00412920496270799)
(-0.0139299632575643 0.998446516862027 0.0538198603326016 -0.0037325224054596)
(-0.0125894270161801 0.998731222574884 0.0486422866214839 -0.00337332680215604)
(-0.011377821997732 0.998963831698321 0.0439603649476757 -0.00304867821591733)
(-0.0102822040612832 0.999153850020246 0.0397274419986532 -0.00275510827463285)
(-0.00929182516300677 0.999309057873637 0.0359008362893083 -0.00248973704863885)

; (test-filter k offset max-iterations error delta-t)
(test-filter-gradient 1.0 10-degrees 100 .001 .1)

(-0.0583152058497816 0.988390682282916 0.139423955287233 -0.0156255123139037)
(-0.0233841113470548 0.990849531450444 0.13278226421806 -0.00626575375116281)
(-0.0351423427807272 0.992718898589437 0.114828290272939 -0.00941636236823354)
(-0.0244014962468546 0.994191294500872 0.104620680327731 -0.00653836121345577)
(-0.0252759303508672 0.995363513062414 0.0925566594905315 -0.00677266512546018)
(-0.0208793028447936 0.996299393515018 0.0831881826398405 -0.00559459233578731)
(-0.0194982062305918 0.997046937933426 0.0740940470762447 -0.00522452861334252)
(-0.0170032438817054 0.997643944329682 0.0663075625701921 -0.00455600546681241)
(-0.0153929960071091 0.9981205821668 0.0591721834286807 -0.00412454084920038)
(-0.0136473996816812 0.9985010080441 0.0528782862760464 -0.00365680972349124)
(-0.0122381790122951 0.998804566699065 0.0472113471120067 -0.00327921018317201)
(-0.0109045963485031 0.999046739936555 0.0421682799130494 -0.00292187778536873)
(-0.00974982771925494 0.999239909185641 0.0376526202393971 -0.00261245846371697)
(-0.00870022237272814 0.999393970093261 0.0336238620118091 -0.00233121755874369)

; (test-filter k offset max-iterations error delta-t)
(test-filter-gradient 1.1 10-degrees 100 .001 .1)

(-0.064152962096264 0.988486763117717 0.135951570888611 -0.0171897343857584)
(-0.0154383501349454 0.991160049344576 0.131705359403706 -0.00413669345112755)
(-0.0402208972792998 0.993164779155011 0.109040605997087 -0.0107771569448435)
(-0.0184433682027599 0.994695655034773 0.10107410049485 -0.00494188561563934)
(-0.0272749736590781 0.99587624841727 0.0862157891375802 -0.00730830716553013)
(-0.0170203420463652 0.996791380025529 0.078079790666324 -0.00456058690622508)
(-0.0195615695694212 0.997502548657585 0.0676648876773959 -0.00524150676881165)
(-0.0143499320307392 0.998055873164189 0.0605290761776836 -0.00384505269907804)
(-0.0145360733162948 0.99848660371862 0.0528964487868246 -0.00389492910622076)
(-0.0116238695093196 0.998821956912581 0.0470093955888315 -0.00311460644794699)
(-0.011028608011913 0.99908305378144 0.0412636498263716 -0.00295510661043149)
(-0.00923422502702625 0.999286324444643 0.0365437914021331 -0.00247430313871896)

85

; (test-filter k offset max-iterations error delta-t)
(test-filter-gradient 1.2 10-degrees 100 .001 .1

(-0.0699884515727754 0.988534814043835 0.132472072408145 -0.0187533490784299)
(-0.00561498066974421 0.99134280914623 0.131170282979858 -0.00150452953597429)
(-0.0489546216571366 0.993459214850227 0.102323841510331 -0.0131173513388009)
(-0.00780925307707703 0.995055303108517 0.0989928322489017 -0.00209248305549306)
(-0.0344797715312819 0.996259806578048 0.0786904519560616 -0.00923882693701665)
(-0.00815760284656923 0.99716942915779 0.0747114800169442 -0.00218582309491202)
(-0.024468423836436 0.997856825885085 0.0603329617468896 -0.00655629440703547)
(-0.00759078677198126 0.998376615370229 0.0564125598165019 -0.0020339451854692)
(-0.0174963668517397 0.998769890812519 0.0461584631606423 -0.00468813736840233)
(-0.00663835602497839 0.999067597782413 0.0426228033683549 -0.00177874213596324)
(-0.0126030030050699 0.999293061991474 0.0352581434831337 -0.0033769644774155)
(-0.00558803870908517 0.999463881528935 0.032225477558732 -0.00149731045937329)

86

87

LIST OF REFERENCES

[BACH96A] Bachmann, E., et. al., “Evaluation of an Integrated GPS/INS System for
Shallow-Water AUV Navigation (SANS)”,Symposium an Autonomous
Underwater Vehicle Technology, IEEE AUV 96, Monterey, California,
June, 1996.

[BACH96B] Bachmann, E.,Research Notes: Quaternion Attitude Filter, Computer
Science Department, Naval Postgraduate School, Monterey, California,
1996.

[BADL93] Badler, N., et. al.,Simulating Humans: Computer Graphics Animation and
Control, Oxford University Press, New York, New York, 1993.

[BROW92] Brown, R., Hwang, P.,Introduction to Random Signals and Applied
Kalman Filtering, Second Edition, John Wiley and Sons, Inc., New York,
New York, 1992.

[COOK92] Cooke, J., et. al., “NPSNET: Flight Simulation Dynamic Modeling Using
Quaternions”,Presence: Teleoperators and Virtual Environments, Fall,
1992, Volume 1, Number 4, pp. 404-420.

[CRAI89] Craig, J., Introduction to Robotics, Mechanics and Control, Second
Edition, Addison-Wesley Publishing Company, Menlo Park, California,
1989.

[FENG96] Feng, J., “An RF/Inertial Head-Tracker”,Phase II Proposal, NAVAIR SBIR
Topic No. N95-144, November, 1996, p. 2.

[FOXL94] Foxlin, E., and Durlach, N., “An Inertial Head-Orientation Tracker with
Automatic Drift Compensation for Use with HMD’s”,VRST’94 - Virtual
Reality Software and Technology, Singapore, August, 1994.

[FREY96A] Frey, W., et. al., “Off-the-Shelf, Real-Time, Human Body Motion Capture
for Synthetic Environments”,Technical Report NPSCS-96-003, Naval
Postgraduate School, Monterey, California, June, 1996.

[FREY96B] Frey, W.,Application of Inertial Sensors and Flux-Gate Magnetometer to
Real-Time Human Body Motion Capture, Master’s Thesis, Computer
Science Department, Naval Postgraduate School, Monterey, California,
September, 1996.

[GMD97] The German National Research Center for Information Technology,
Virtual Working Environment for Scientists, Physicians, and Architects,
http://viswiz.gmd.de/, Internet, 1997.

88

[HANC96] Hancock, D., An Interactive Computer Graphics System with Force
Feedback Display, Final Report on Haptics Project, http://www.best.com/
~dennish/haptics/, Hewlett Packard Labs, San Mateo, California, 1996.

[INTE96] InterSense,IS-300 Series User’s Guide, InterSense Incorporated, 1996.

[INTE97] InterSense, Inc., http://www.isense.com, Internet, 1997.

[LIPM90] Lipman Electronic Engineering Ltd.,V-Scope VS-100 Owner’s Guide Rev.
1.3, Cat. No. 050-32-002, 1990.

[MCGH67] McGhee, R., “ Some Parameter-Optimization Techniques”, in Digital
Computer User’s Handbook, McGraw-Hill, 1967, pp.234-253.

[MCGH93] McGhee, R.,CS-4314 Class Notes: Derivation of Body Angular Rates to
Euler Angle Rates Relationship, Computer Science Department, Naval
Postgraduate School, Monterey, California, 1993.

[MCGH95] McGhee, R., et. al., “An Experimental Study of An Integrated GPS/INS
System for Shallow-Water AUV Navigation (SANS)”,Proceedings of the
9th International Symposium on Unmanned, Untethered Submersible
Technology, Durham, NH, September, 1995, pp. 1-15.

[MCGH96A] McGhee, R.,Research Notes: A Quaternion Attitude Filter Using Angular
Rate Sensors, Accelerometers, and a 3-Axis Magnetometer, Computer
Science Department, Naval Postgraduate School, Monterey, California,
1996.

[MCGH96B] McGhee, R.,CS-4920 Class Notes: Derivation of SANS Filter Equations,
Computer Science Department, Naval Postgraduate School, Monterey,
California, 1996.

[MCGH96C] McGhee, R.,Research Notes: Estimation of Heading From a 3-Axis
Magnetometer, Computer Science Department, Naval Postgraduate School,
Monterey, California, 1996.

[MEYE92] Meyer, K., Applewhite, H. L., and Biocca, F. A., “A Survey of Position
Trackers”, Presence: Teleoperators and Virtual Environments, Spring,
1992, Volume 1, Number 2, pp. 173-200.

[NRG97] NPS Research Group Homepage, http://www-npsnet.cs.nps.navy.mil/
npsnet/pics.html, Internet, 1997.

[PAUL90] Paul, R., Funda, J., Taylor, R., “On Homogeneous Transforms,
Quaternions, and Computational Efficiency”,IEEE Transactions on
Robotics and Automation, June, 1990, Volume 6, Number 3, pp. 382-388.

89

[POLH93] Polhemus,3Space Fastrak User’s Manual Revision F, OPM3609-002C,
November, 1993.

[ROBE97] Roberts, R.,Implementation and Evaluation of an Integrated, Self-
Contained GPS/INS Shallow-Water AUV Navigation System (SANS),
Master’s Thesis, Computer Science Department, Naval Postgraduate
School, Monterey, California, March, 1997.

[SKOP96] Skopowski, P. F.,Immersive Articulation of the Human Upper Body in a
Virtual Environment, Master’s Thesis, Computer Science Department,
Naval Postgraduate School, Monterey, California, December, 1996.

90

91

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center...2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library..2
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. ECJ6-NP ...1
HQ USEUCOM
Unit 30400 Box 1000
APO AE 09128

4. Chairman, Code CS ..2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr. Robert B. McGhee, Professor...2
Computer Science Department Code CS/Mz
Naval Postgraduate School
Monterey, CA 93943-5000

6. John S. Falby, Lecturer...2
Computer Science Department Code CS/Fa
Naval Postgraduate School
Monterey, CA 93943-5000

7. Dr. Michael Zyda, Professor...1
Computer Science Department Code CS/Zk
Naval Postgraduate School
Monterey, CA 93943-5000

8. Dr. Don Brutzman ..1
Computer Science Department Code UW/Br
Naval Postgraduate School
Monterey, CA 93943-5000

92

9. LT Eric R. Bachmann...1
Computer Science Department Code CS
Naval Postgraduate School
Monterey, CA 93943-5000

10. LT German A. Henault, USN...1
12154 Penderview Terrace # 1221
Fairfax, VA 22033

